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Abstract: In its introduction, this article gives a short state of the art about ontologies of knowledge representation 
languages (KRLs) and the problems caused by i) the lack of relations between these ontologies, and ii) the 
lack of ontologies about notations (concrete syntaxes). For programmers, these are the difficulties of 
importing, exporting or translating between KRLs; for end-users, the difficulties of adapting, extending or 
mixing notations. To show how these problems can be solved, this article first shows how concepts of the 
main KRL standards can be aligned and organized. Then, it shows how this KRL model ontology can be re-
used and completed by a notation ontology. Based on these two ontologies, KRLs models and notations -
 and thereby parsing and generation - can be specified in a concise way that even KRL end-users can adapt. 
The article gives representative examples. For these ontologies or specifications, a concise KRL notation is 
introduced and used. However, the presented approach is independent of any notation and model that has at 
least OWL-2 expressiveness. Thus, the results can easily be replicated. A Web address for the full 
specification of the two ontologies, and for a knowledge server to test or use them, is also given.

1 INTRODUCTION 

Various language models are used for knowledge 
representation, retrieval and exploitation. For each 
model (abstract syntax) there are also many  possible 
notations (concrete syntaxes). Creating a parser or an 
export procedure for each knowledge representation 
language (KRL; one model and/or one notation) is 
time-consuming. Specifying the automatic translation 
of knowledge (representations) from one KRL to 
another is difficult, especially without some shared 
ontology of these KRLs, hence without formal 
semantic relations between their components. 
Learning and understanding a KRL is also difficult 
for a person. These are therefore also difficulties for 
knowledge sharing. For a knowledge provider, not 
being able to adapt a KRL notation, is also limiting.  

There have been many works for partially 
addressing these problems, except for the last one 
which requires the use of a KRL notation ontology to 
enable any significant adaptation. 

An early major work was KIF (Knowledge 
Interchange Format) (Genesereth and Fikes, 1992), a 
1st-order logic based KRL - with a 2nd-order notation - 

to which most KRLs could be translated to and 
formalized with. Many were. To ease this, the 
Ontolingua "ontology server or shared repository" 
(Farquhar et al., 1997) provided a well formalized 
KRL model ontology. E.g., it included a formalization 
of frame-based language concepts in KIF (concepts 
similar to those of OWL). 

Later, with the popularization of MOF (the Meta-
Object Facility of the OMG: Object Management 
Group), XML and then RDF, many language models 
or ontologies were created in these three languages. 
These were often simple lists of KRL components 
and their structural relations. Indeed, MOF, XML and 
RDF do not permit to fully define KRL components 
and hence relate all of them as in Ontolingua. They 
still permit to declare and use a set of KRL 
components that corresponds to a certain logics with 
well studied properties. Thus, the W3C provided the 
different language ontologies of the OWL family 
(OWL 2, 2009). With RIF-FLD, it also provided an 
expressive and extensible "Framework for Logic 
Dialects" (RIF-FLD, 2013). ANSI provided CL 
(Common Logic, 2007), a "framework for a family of 
logic-based languages" restricted to 1st-order logic. 
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The OMG created a "Conceptual package" along with 
an ontology for the "Semantics of Business 
Vocabulary and Business Rules" (SBVR, 
2008).These standards (RDF+OWL+RIF-FLD,   CL 
and MOF+SBVR) have similar or complementary 
components. They are declared in their respective 
XML schemas but, to our knowledge, no ontology 
semantically relates them nor to concepts in Onto-
lingua. However, within the scope of each of these  
standards, there are works on translating between 
models or ontologies. E.g., the W3C specifies ways 
to re-use RDF and OWL knowledge in RIF.  

Model translation is often only a part of knowledge 
translation or (re-)presentation. Indeed, there are 
many existing or potential notations for KRL models 
and, so far, unlike some KRL models, no notation was 
represented by an ontology. Thus, no notation could 
be adapted or extended by their users, except very 
partially via a system of macros such as the one 
usable with the C programming language. A different 
parser and generator also had to be built for each 
notation, except for XML-based notations (e.g, 
RDF/XML: RDF in XML). The W3C proposes  XSLT 
for specifying syntactic translations between XML 
based notations. It also proposes GRDDL for 
specifying where a software agent can find "algorithms 
(typically represented in XSLT)" to convert a structure 
or notation to RDF/XML. Conversely, there are some 
style-sheet based transformation languages and 
ontologies for specifying how RDF abstract structures 
can be presented, e.g., in a certain order, in bold, in a 
pop-up window, etc. :  Xenon (Quan, 2005),  Fresnel 
(Bizer et al., 2006), OWL-PL (Brophy and Heflin, 
2009) and SPARQL Template (Corby et al., 2014). 
With these tools or the approach behind these tools, 
each modification to a notation requires a new 
template or style-sheet, and parsing is not addressed. 

Supporting knowledge import/export/translation 
in a generic way requires specifying KRLs with 
respect to a KRL model ontology and a KRL notation 
ontology. This article presents such ontologies and 
gives examples of their use. To do so in a sufficiently 
concise and readable way, Section 2 first introduces 
FL, a concise and "visually structured" notation. 
Then, using FL, it shows how the main concepts of 
RIF-FLD, CL and SBVR can be related, defined and 
generalized to create the above cited two ontologies. 
This work required many readings of the 
specifications and grammars of RIF-FLD since they 
leave their underlying ontology implicit. Section 3 
shows how the models and grammar of KRLs - and 
thereby their parsing, presentation and translation - 
can be specified based on these two ontologies. CSS-
like presentation based on syntactic or semantic 

features could also be similarly specified but this is 
outside the scope of this article.  

The generic approach we propose to solve the 
initially listed problems is independent of any 
notation and any model that has at least OWL 2 
expressiveness. This article focuses on presenting the 
main ideas of the approach. The whole ontologies and  
model+notation specifications of various KRLs, as 
well as a Web server interface to test or use them, are 
available at http://www.webkb.org/KRLs/. This 
interface is similar to Google Translate except that the 
input and output languages are KRLs and, instead of 
KRL names, KRL specifications can also be given. 

2 LANGUAGE ELEMENTS 

To allow the display and understanding of its 
numerous required illustrations, this article needs a 
concise and intuitive notation for KRLs of OWL-like 
expressiveness. Unfortunately, graphical notations are 
not concise enough and common notations such as 
those of the W3C are not sufficiently concise and 
"structured" enough. Here, "structured" means that all 
direct or indirect relations from an object can be (re-
)presented into a unique tree-like statement so that the 
various inter-relations can readily be seen. Table 1 
illustrates this by representing the same statement in 
five notations: FL then UML, Turtle (or Notation3),  
OWL Manchester notation and OWL Functional-style. 
The way to read the content for FL is explained and 
given in italics within a paragraph following the table. 

The last notation is "positional relation" based. 
The first four are graph-based notations: they are 
composed of concept nodes and relation nodes. These 
textual graph-based notations are frame-based. A 
frame is a statement composed of a first "object" 
(alias "node": individual or type, quantified or not) 
and several links associated to it (links from/to other 
objects). In this article, "link" refers to an instance of 
a "binary relation type". In OWL, such a type is 
instance of "owl:Property" (in FL: owl#Property). 
What is not an individual is a type: relation type or 
concept type (an instance of owl#Class in OWL).  

In this article, the default namespace is for the 
types we introduce. The names of a concept type or 
individual that we introduce is a nominal expression 
beginning by an uppercase letter. The name of a 
relation type we introduce begins by "r_" (or "rc_" if 
this is a type of link with destination a concrete term). 
Thus, names not following these conventions and not 
prefixed by a namespace are KRL keywords. 

$Q�2QWRORJ\�IRU�6SHFLI\LQJ�DQG�3DUVLQJ�.QRZOHGJH�5HSUHVHQWDWLRQV�6WUXFWXUHV�DQG�1RWDWLRQV
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Table 1: The same statement - or set of statements (here, a set 
of relations about Language_or_Language-element) - in five 
different notations: FL, UML,  Turtle,  OWL Manchester, 
OWL Functional-Style.  In all other tables, FL will be used. 

Language_or_Language-element   //below: links defining it
  = exclusion 
     {  (Language   r_part:  1..* Language_element, 
                             >    KRL    Grammar  ) 
         Language_element 
     }; 

//Notes.  ">" is an abbreviation for the "subtype" link (as in
//  some other notations). "<" is its inverse.  "exclusion{...}"
//  specifies a union of disjoint types.  If "T = exclusion{...}"
//  this is one subtype partition of T.  If "T > exclusion{...}"
//  this is not a partition (or it is an "incomplete" one).  A ","
//  separates 2  links of different types.  For consecutive links
//  of the same type, this type needs not  be repeated and the 
//  destinations are only separated by one or several spaces. 

 

Language_or_Language-element 
 

 

 
Language  Language-element

   

       
 

KRL  Grammar 
   

 

:Language_or_Language-element   owl:equivalentClass   
      [ rdf:type   owl:Class; 
        owl:unionOf  ( :Language  :Language_element )  ]. 
[ ] rdf:type  owl:AllDisjointClasses; //:no shared instance 
    owl:members  ( :Language  :Language_element ). 
Language  rdfs:subClassOf   [a owl:Restriction; 
   owl:onProperty  : r_part; 
   owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger;
   owl:onClass  Language_element ]. 
KRL  rdfs:subClassOf  :Language. 
Grammar  rdfs:subClassOf  :Language.�

Class:  Language_or_Language-element 
    EquivalentTo:  Language  or  Language-element 
DisjointClasses:  Language, Language-element  
Class: Language EquivalentTo:  
                                 r_part  min 1 Language_element 
Class: KRL  SubClassOf:  Language 
Class: Grammar  SubClassOf:  Language 

EquivalentClasses( :Language_or_Language-element   
         ObjectUnionOf( :Language  Language-element) ) 
DisjointClasses(: Language :Language_element) 
EquivalentClasses( :Language 

  ObjectMinCardinality(1 :r_part  :Language_element) ) 
SubClassOf (:KRL  : Language) 
SubClassOf (:Grammar  : Language) 

Within nominal expressions, '_' and '-" are used 
for separating words. When both are used, '-' connects 
words that are more closely associated.  

Since nouns are used for the introduced types, the 
common convention for reading links in graph-based 
KRLs can be used: links of the form "X   R: Y" can 
be read "X has for R Y".  If "of" is used for reversing 
the direction of a link, the form "X   R of: Y" can be 
read "X is the R of Y". In FL, if a link is not a subtype 
link (or another "link from a type"), the first node is 
quantified and its default quantifier is "any", the 
"forall" quantifier for definitions (in other words, the 
type in the first node is defined by this link). Links 
with the same first node may quantify it differently. 
Indeed, in FL, the quantifiers of the source node and 
destination node of each link may also be specified in 
its relation node or in its destination node. This 
permits FL to gather any number of statements into a 
unique visually connected graph. However, in this 
article, the quantifier for the first node is always "any" 
and left implicit. A destination node can also be 
source of links if they are encapsulated within 
parenthesis. Thus, given all this and the notes at the 
end of the FL content in Table 1, its  first six lines can 
be read: "The type Language_or_Language-element is 

equivalent to its subtype partition composed of 

Language_element and Language, and any instance of 

Language has for (r_)part at least 1 instance of 

Language_element. This last type has for subtypes (at 

least) KRL and Grammar".  The other tables of this 
article can now be read (any new keyword will be 
explained, most often via a comment next to it). In 
these tables, bold characters are only for highlighting  
important types and for readability purposes. 

Table 2 shows how types for KRL models and 
notations can be organized and inter-related. E.g.,  
RIF-FLD includes RIF-BLD, both are part of the RIF 
family of models, and both have a Presentation 
Syntax ("PS") and an XML linearization.    

Table 3 relates Language_element and some of its 
direct subtypes to important top-level types, thus 
adding precisions to these subtypes. Such a 
specification is missing in RIF-FLD but is well 
detailed in SBVR. This is why Table 3 includes many 
top-level SBVR types, although indirectly: the types 

with names in italics are still types that we introduce 
but they have the same names as types in SBVR and 
are equal to them or slight generalizations of them. 
This approach is for readability reasons and flexibility: 
if the SBVR authors disagree with our interpretation 
of their types, only some links to SBVR types will 
have to be changed, not our ontology. As illustrated 
by Table 3, to complement and organize types from 
other ontologies, ours had to include many new types. 

    r part               1..* 

  {disjoint, complete} 

.(2'��������,QWHUQDWLRQDO�&RQIHUHQFH�RQ�.QRZOHGJH�(QJLQHHULQJ�DQG�2QWRORJ\�'HYHORSPHQW
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Table 2: Examples of relations between KRLs. 

KRL  r_part: 1..* Language_element, 
 > exclusion { KRL_notation  KRL_model }, 
 r_grammar_head_element_type: Grouped_phrases; 
 
KRL_notation 
 > (S-expression_based_notation  >  LISP_based_KIF) 
    (Function-like_based_notation  
       >  (RIF_PS  >  RIF-FLD_PS   RIF-BLD_PS) ) 
    (Graph-based_notation 
       > (Markup_language_based_notation 
             > (XML_based_notation  
                   >  (RIF_XML  > RIF-FLD_XML) ) 
          (Frame_based_notation  >  FL  JSON-LD Turtle) )  );
 

KRL_model 
 > (First-order-logic_with_sets_and_meta-statements 
       > (KIF_model  r_model_type of: LISP-based_KIF), 
       r_part: 1..* First-order-logic ) 
    (First-order-logic > (CL  r_model_type of: CLIF) ) 
    (RIF > (RIF-FLD  r_model_type of: RIF-FLD_PS, 
                                     r_part: RIF-BLD ) 
                (RIF-BLD  r_model_type of: RIF-FLD_PS) ) 
    (Graph-based_model  r_model_type of: JSON-LD, 
       > JSON-LD_model 
          (RDF  r_part: 1..* JSON-LD_model,  
                     r_model_type of: JSON-LD  RDF/XML), 
          (Frame_model_with_closed_world_assumption  
            > F-Logic_classic_model ) 
          (Frame_model_with_open_world_assumption 
            > (Description_logic_model > OWL_model) ) ); 

OWL_model  
 > (OWL-1_model > OWL-Lite  OWL-DL   OWL-1-Full) 
    (OWL-2_model > OWL-2_EL  OWL-RL  OWL-2-Full), 
       r_part: 1..* (OWL-1-Full  r_part: 1..* RDF, 
                                                 r_part: 1..* OWL-DL ) ) 
                  1..* (OWL-2-Full  r_part: 1..* OWL-2_EL ) ); 

 

In RIF-FLD, depending on the context, the word 
"term" has different meanings. In our ontologies,  
Gterm generalizes all these meanings of "term": it is 
identical to Language_element and sbvr#Expression. 
In RIF-FLD, an "individual term" is an abstract term 
that is not a Phrase (see Table 3), although it may 
refer to one.  Individual_gTerm - or, simply "Iterm" - 
generalizes this notion to concrete terms too. This 
distinction was very useful to organize types of 
language elements, especially those from the 
implicit ontology of RIF-FLD (this framework uses 
different vocabulary lists, including one for 
signatures;  in our ontology, all these terms are inter-
related). In this context, "individual" does not refer 
to "something that is not a type". Since an Iterm may 
refer to a Phrase, an Iterm identifier may be a Phrase 
identifier. Thus, Table 3 uses the construct "near-
exclusion" instead of "exclusion".   
 

Table 3: Situating Language_element w.r.t. other types 
(note: names in italics come from SBVR). 

Thing = owl#Thing,   r_identifier: 0..* Individual_gTerm, 
 = exclusion 
    { (Situation  =  exclusion{State Process}, 
          r_description: 0..* Phrase ) 
       (Entity   //thing that can be involved in a situation 
         > exclusion 
            { Spatial_entity  //e.g., Square, Physical_Entity 
               (Non-spatial_entity  //e.g., Justice, Attribute, ... 
                > (Description_content = Meaning, 
                       > Proposition   Question 
                          (Concept > Noun_concept  //e.g., types 
                                             (Verb_concept = Fact_type) ) )
                   (Description_container > (File > RDF_file)) 
                   (Description_instrument 
                     > (Language_or_Language-element 
                           = exclusion 
                              { (Language  >  KRL   Grammar, 
                                    r_part: 1..* Language_element )  
                                 Language_element    //see below 
                              } ) ) ) 
            }  )  }; 

Language_element  =  Gterm   Expression, 
  r_representation of: 1 Meaning, 
  > near_exclusion     //String is both abstract and concrete 
     { (Representation > Statement,  
           rc_type: Concrete_term ) 
        (Concrete_term  >  (Expression > Text), 
           > (Concrete_iTerm <  Iterm) )  //see Table 7 
     } 
     near_exclusion  //a reference to a phrase is an Iterm  
     { (Phrase > Statement  Definition  Frame) //Tables 5-6 
        (Individual_gTerm  = Iterm,   //see Table 7 
           > Place_holder,    r_identifier  of: 1 Thing ) 
     } 
     near_exclusion { Positional_gTerm   Frame 
                                  Gterm_with_named_arguments  } 
     near_exclusion  //subtyping these types is KRL dependent 
     { (Referable_gTerm  //e.g., via a variable 
           r_annotation: 0..* Annotation,  //referable -> linkable 
           > (Gterm_that_cannot_be_annotated_without_link 
                 r_annotation: 0 Annotation ) ) 
         Non-referable_gTerm  //e.g., a predefined term 
     }; 

 

This construct has no formal meaning (it does 
not set exclusion links). It is only useful for 
readability purposes. Table 3 also uses it to group 
and distinguish types for abstract and concrete 
terms. Indeed, a (character) string may be seen by 
some persons as being both abstract and concrete. 
Our ontology must be compatible with such visions 
when they come at no cost. 

RIF-FLD distinguishes three types of generic 
structures for a Gterm that is a function or a phrase. We 
dropped their RIF-related restrictions and named them 

$Q�2QWRORJ\�IRU�6SHFLI\LQJ�DQG�3DUVLQJ�.QRZOHGJH�5HSUHVHQWDWLRQV�6WUXFWXUHV�DQG�1RWDWLRQV
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Positional_gTerm, Gterm_with_named_arguments and 
Frame. Table 1 gave examples for positional and frame 
terms. A term with named arguments is similar to a 
frame except that, as in object-oriented languages, local 
attribute names are used instead of link types (types are 
global). It could be argued that a same term could be 
presented in any of these three forms and hence that 
these three distinctions should rather be syntactic. 
However, the authors of RIF-FLD have not formalized 
the equivalence/correspondence between  i) "classes and 
properties" ("interpreted as sets and binary relations") 
and  ii) "unary and binary predicates",  in order to have 
a "uniform syntax for the RIF component of both RIF-
OWL 2 DL and  RIF-RDF/OWL 2 Full  combinations"  
(RIF-FLD-OWL, 2013).  According to this vision, each 
person re-using ontologies must decide if, for its 
applications, stating such an equivalence is interesting 
or not.  RIF rules or a macro language such as OPPL 
can certainly be used for such structural translations 
(Šváb-Zamazal et al., 2012). However, to avoid 
imposing this exercise to most users of our KRL model 
ontology, and to avoid limiting its use for specifying 
KRLs, it formalizes relations between a frame and a 
Conjunction_of_links_from_a_same_source (this is 
done in the last 15 lines of Table 6 plus the 3 lines 
related to Half-link in Table 7;  reminder: a link is - or 
can also be seen as - a binary relation).  

We found that a small number of link types are 
sufficient for defining a structure for abstract terms and 
specifying their related concrete terms. Table 4 lists and 
explains the main link types. They can be seen as a 
representation and extension of the signature system of 
RIF-FLD. The ideas are that 1) every composite term 
can be decomposed into a (possibly implicit) operator 
(e.g., a predicate, a quantifier, a connective, a collection 
type) and a list of parameters (alias, "parts"), and 
2) many non-binary relations can be specified as links 
to a collection of terms.  Table 5 and the subsequent 
tables use the link types of Table 4 directly or via 
functions which are shortcuts for specifying such links. 
This is highlighted via bold characters in those tables. 
The end of Table 4 specified one of these functions.  In 
the tables 5 to 7, which illustrate the organization of 
subtypes of Phrase and Iterm, this function is used to 
define certain abstract terms as links and hence enable 
to store them or present them as such when necessary.  

Some of such links are used for both abstract and 
concrete terms. E.g., rc_operator_name is often also 
associated to an abstract term for specifying a default 
name for its operator.  If no such link is specified or if 
"" is given as destination, the operator type name 
(without its namespace identifier) is used as default 
operator name. 
 

Table 4: Main links for defining a structure for abstract 
terms and specifying concrete terms. 

Language_element  
  r_operator:  0..1 Operator , //Table 7 
  r_part:  0..* Gterm,  //object parts or fct/relation arguments 
  r_parts: 1 List,  //r_part destinations, sequentially ordered 
  r_result: 1 Gterm, //e.g., a phrase has for r_result a boolean
  rc_type:  Concrete_term;  //rc_type is defined below 
 
rc_link_to_concrete-term  //also often from a Concrete_term
      _[Gterm,Concrete_term]  //signature of this relation type 
 >  rc_begin-mark    rc_separator    rc_end-mark  
      rc_operator_begin_mark   rc_operator_end_mark 
      rc_operator_name   rc_infix-operator_position 
      rc_parts_begin-mark   rc_parts_separator  
      rc_parts_end-mark  rc_annotation_position; //-1: before 
 
r_part  //below are examples of its subtypes 
  > (r_relation_parameter  
         > (r_link_parameter 
               >  (r_link_source       >  rdfs#domain) 
                   (r_link_destination > rdfs#range) ) ) 
     r_function_parameter 
     r_phrase_part > rdf#subject  rdf#object; 

r_operator  >  rdf#predicate;  //just an example 
                
//r_parts permits to order the parts, this is sometimes 
// needed for abstract terms and this also permits to give 
// a default order for presentation purposes. 
r_parts _[?e,?list] 
  :=>  [any  ^(Thing  r_member of: ?list)  r_part of: ?e]; 
r_parts _[?e,?list] 
  :<= [any  ^(Thing  r_part of ?e)  r_member of: ?list]; 
 
/* Notes:  in FL,  ":=' permits to give a full definition, 
 ":=>"  gives only "necessary conditions",   
 ":<=" gives only "sufficient conditions",  
 "^(" and ")" delimit a  lambda-abstraction (a construct 
        defining and returns a type; in OWL related KRLs, 
        owl#Restriction can be used), 
 "_(" and ")" delimit the parameters of a function call, 
 "_[" and "]" delimit the parameters of a definition, 
 ".[" and "]" delimit  the elements of an list, 
 ".{" and "}" delimit the elements of a set.  */ 
 
rc_type _[?t,?rct] := [any ?t  rc_: 1..* ?rct];   
//people who see concrete terms as specialisations of  
// abstract terms can still state:  
//    rc_type < subtype;   rc_  r_type:  instance; 
 
   //in the next function signature, the variables are untyped 

f_link_type  _[ ?operatorName,  ?linkType, 
                         ?linkSourceType,  ?linkDestinationType ] 
 :=  ^(Link   rc_operator_name: ?operatorName,   
             r_operator: ?linkType,  r_result: 1 Truth_value, 
             r_link_source: 1 ?linkSourceType,  
             r_link_destination: 1 ?linkDestination, 
             r_parts: .[ ?linkSource ?linkDestination] ); 
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Table 5: Important top-level types of phrases (first row); a way to restrict this general model for KRLs (2nd row) (note: 
names in italics come from RIF-FLD, names in bold italics are used in RIF-FLD signatures, bold is for highlighting). 

Phrase <  ^(Gterm  r_operator: 1  (Relation_type  > (owl#Property  r_instance: r_binary_relation ) ), 
                                r_result: 1 (Truth_value  r_instance:  True  False  Indeterminate_truth-value/*for example*/ ) ), 
  > (Phrase_that_is_not_referable_in_RIF-FLD   //hence, phrase that cannot have an annotation in RIF-FLD 
         > (Annotation  >  cl#Comment ,  //"cl#' prefixes terms from Common Logics 
                 > (Formal_annotation  > (RIF_annotation  r_parts: .[0..1 Constant, 0..1 Frame_or_Frame-conjuction]) ) 
            (Annotating_phrase =  f_link_type_("",r_annotation,Gterm,Annotation)) 
            Module_directive    Attribute  ), 
  = exclusion  
     { (Modularizing_phrase 
           > (Phrases =  Grouped_phrases,   r_part: 0..* Phrase,  > cl#Text,   //Phrases is the head element of a KRL grammar 
                 > (Module   >  cl#Module  cl#NamedText, 
                        > (Document   r_part:  0..1 Document_Directive   0..1 Phrases), 
                        r_part: 0..1 (Module_parts_that_are_directives  <  Module, 
                                              >  Module_header = f_link_type_("",r_header,Module, .[0..* Module_directive] ) ) 
                                    0..1 (Module_parts_that_are_not_directives = f_link_type_("Group",r_group,Module,.[0..* Phrases], 
                                              <  Module,   >  Module_body   Group_of_phrases ), 
                        r_parts: .[0..1 Module_header, 0..1 Module_body]  ) ) 
              (Module_directive = f_link_type_("",r_relation,Module,Thing), 
                 > (Module_name_directive = f_link_type_("Name",r_name,Module,Name) ) 
                    (Excluded_Gterm-reference_directive = f_link_type_("",r_excluded_gTerm,Module,.[1..* Gterm_reference]) ) 
                    (Document_directive  

                       > (Dialect_directive =  f_link_type_("Dialect",r_dialect,Module,Name)) 
                          (Base_directive     =  f_link_type_("Base",r_base,Module,Document_locator)) 
                          (Prefix_directive   =  f_link_type_("Prefix",r_prefix,Module,NamespaceShortcut-DocumentLocator_pair)) 
                          (Import-or-module_directive  > cl#Importation, 
                             > (Import_directive = f_link_type_("Import",r_imported-doc,Document,Imported_document_reference) ) 
                                (Remote_module = f_link_type_("Module",r_imported-module,Module,Remote_module_reference) ) 
                          ) ) ) ) 
        (Non-modularizing_phrase   //this may include non-monotonic phrases: assertions, queries, removals 
           > (Formula  >  Positional_formula   Formula_with_named_arguments   > cl#Sentence  Phrase_of_a_grammar, 
                 = exclusion  //the 3 following distinctions come from KIF 
                    { (Definition = exclusion { Non_conservative_definition  Conservative_definition } ) 
                       (Sentence  //fact in a world: formula assigned a truth-value in an interpretation 
                          >  Belief  //the fact that someone believes in a certain thing 
                              Axiom ) //sentence assumed to be true, from/by which others are derived 
                       (Inference_rule> Production_rule) //like an implication but the conclusion is "true" only if/when the rule is fired 
                    } 
                     exclusion  { Composite_formula    Atomic_formula_or_reference_to_formula } ) ),   //see Table 7 
                 > Termula,  //parameter for a function or atomic_formula; its subtypes  are not listed in this article 
     };  

     //with the next subtype of r_part, the source ?x has some parts of type ?pt but no other parts with type the genus of ?pt 
r_only_such_part_of_that_type _[?x ?pt]  <  r_part _(?x ?pt),                               //this definition requires that relations of type 
  := [?x  r_part:  1..* ?pt    0 ^(?t != ?pt,  < (?gpt  r_genus_supertype of: ?pt))];    // r_genus_supertype are set by definitions 
 
//Thanks to this link type,  our general model for KRLs and the default presentation associated to its abstract terms, 
//  KRLs can be defined in a very concise way.  Below are examples for some abstract terms of some KRLs.  
//  The next section give examples for some concrete terms of some KRLs.  For the Triplet_notation, nothing else is required. 

RIF   r_only_such_part_of_that_type:   //any model of the RIF family has for part terms defined by the following lambdas: 
 ^(Gterm_that_can_be_annotated_without_link > Phrase)   ^(Grouped_phrases  r_part: 0..* Document)   
 ^(Quantification >  Classic_quantification)    ^(Frame > Minimal_frame)    ^(Collection > List) 
 ^(Delimited_string > Delimited_Unicode_string);  //in RIF, the only "delimited strings" are "delimited Unicode strings" 

RIF-BLD   r_only_such_part_of_that_type:    ^(Rule_conclusion > rif-bld#Formula)     //these are just two examples, 
 ^(Rule_premise  >  Connective_phrase_on_atomic_formulas   Conjunction_phrase);    //  RIF-BLD has other restrictions 

Triplet_notation = ^(KRL r_only_such_part_of_that_type:  ^(Phrase > Link)  ^(Individual_gTerm > Constant_or_variable) ); 
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Table 6: Important types of formulas and connections between frames, links and positional formulas (note: names in italics 
come from RIF-FLD, names in bold italics are used in RIF-FLD signatures, bold is for highlighting). 

Composite_formula =  f_relation_type_("",r_relation,.[1..* Formula]),  // => r_part: 1..* Formula 
  > exclusion  
     { (Formula_connective   r_operator_type:  1 connective_operator,   >  cl#Boolean_sentence, 
           > exclusion 
              { (Connective_phrase_with_1_argument  = f_relation_type_("",r_unary_relation,.[1..* Formula]), 
                   > (Negating_formula=exclusion{(Symmetric_negating_formula = f_relation_type_("Not",r_not,.[1..* Formula]))
                                                                           (Negation-as-failure_formula = f_relation_type_("Naf",r_naf,.[1..* Formula])) 
                                                                         })) 
                 (Connective_phrase_with_2_arguments  = f_relation_type_("",r_binary_relation,.[1..* Formula]), 
                    >  (Rule = f_relation_type_(":-",r_rule_implication,.[1..* Formula]), 
                           = exclusion{  (Inference_rule     > Production_rule)   (Logical_rule <  Sentence, > Logical_implication) } 
                              exclusion{  (Implication_only > Production_rule)   (Logical_equivalence r_operator: r_equivalence) }, 
                           r_part:  1 (Rule_premise < Formula)   1 (Rule_conclusion < Formula)  ) ) 
                 (Variable-n-ary_connective_phrase = f_relation_type_("",r_variable-ary_relation,.[1..* Formula]), 
                    >  exclusion { (Disjunction_phrase = f_relation_type_("Or",r_or,.[1..* Formula])) 
                                            (Conjunction_phrase = f_relation_type_("And",r_and,.[1..* Formula]), 
                                               > (Conjunction_of_links = f_relation_type_("And",r_and,Link), 
                                                      > Frame_as_conjunction_of_links_from_a_same_source ) )   } )  
              } ) 
        (Quantification = f_quantification_type_("",Quantifier,.[1 Type],Constant-or-variable,Formula), 
            > (Classic_quantification = f_quantification_type_("",Quantifier,.[],Variable,Formula) )   //no guard, no constant 
                exclusion   
                { (Universal_quantification = f_quantification_type_("Forall",q_forall,.[1 Type],Constant_or_variable,Formula), 
                       > (Classic_universal_quantification = f_quantification_type_("Forall",q_forall,.[],Variable,Formula) ) ) 
                   (Existential_quantification = f_quantification_type_("Exists",q_exists,.[1 Type],Constant_or_variable,Formula), 
                       > (Classic_existential_quantification  = f_quantification_type_("Exists",q_exists,.[],Variable,Formula) ) )   } ) 
     }; 
 
Atomic_formula_or_reference_to_formula  
  > exclusion { (Formula_reference  //this is also an Individual_gTerm 
                            > exclusion { Variable_for_a_formula        Reference_to_formula_in_remote_module  //with the same KRL 
                                                   Reference_to_externally_defined_formula } )   //not in a module and not with the same KRL 
                         (Atomic_formula  
                             > { Constant_for_a_formula 
                                   (Atomic_formula_that_is_not_a_constant 
                                      > near_exclusion   //possible shared subtypes: subclass_or_equal, link 
                                         { (Positional-or-name-based_formula    r_operator: 1 Termula,   >  cl#Atomic_sentence, 
                                               > exclusion { (Positional_formula  r_part: 1..* Termula) 
                                                                      (Name-based_formula  r_part: 1..* Name-Termula_pair) } )  
                                            (Equality_formula = f_link_type_("=",r_equal,Termula,Termula),  >  cl#Equation) 
                                            (Class-membership = f_link_type_("#",r_type,Termula,Termula) )  
                                            (Subclass_formula = f_link_type_("##",r_supertype,Termula,Termula) )  
                                            (Frame = (Frame_as_conjunction_of_links_from_a_same_source  ?f 
                                                                  r_frame_head: 1 Termula ?fh,    r_part: (1..* Link  r_link_source: ?fh) ) 
                                                             (Frame_as_head_and_half-links_from_head  ?f  
                                                                  r_operator: (1 Termula ?fh  r_frame_head of: ?f), 
                                                                  r_part: (1..* Half_link  r_link_source: ?fh), 
                                                                  > (Minimal_frame  r_part: 1..* Minimal_half-link) ) ) 
                                         } ) 
                                         (Binary_atomic_formula_that_is_not_a_constant 
                                           > (Link  =  (Link_as_positional_formula  < Positional_formula, 
                                                                  <  f_link_type_("",r_binary_relation_type,Termula,Termula), 
                                                                  r_part of: (1 Frame ?f  r_frame_head: 1 Termula ?fh),   r_link_source: ?fh ) 
                                                              (Link_as_frame_part   r_part of: (1 Frame ?f  r_frame_head: 1 Termula ?fh), 
                                                                  r_operator: ?fh,   r_link_source: ?fh,   r_link_destination: 1 Termula ?ld, 
                                                                  r_part: (1 Half_link   r_link_source: ?fh,   r_operator: ?fh,  r_parts: ?ld )  ) ) )  
                                } )  }; 
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Table 7: Important types of "individual terms" (terms that are not phrases except for those referring to phrases) (note: names 
in italics come from RIF-FLD, names in bold italics are used in RIF-FLD signatures, bold is for highlighting). 

Individual_gTerm  //the expression "Individual term" comes from RIF-FLD 
  = near_exclusion 
     { (Individual_concrete_term    //see next sub-sections for details 
           >  Concrete-term_for_constant_or_name   Lexical-grammar_character-set   Concrete_list-like_term 
                Concrete_list-like_term    (String >  (Delimited_string > Delimited_Unicode_string))    Character  ) 
        (Individual_abstract_term 
           > (Abstract_individual_gTerm_that_is_not_referable_in_RIF-FLD 
                 > exclusion 
                    { (Operator_that_is_not_referable_in_RIF-FLD  //predefined in RIF-FLD which does not rely on an ontology 
                          > exclusion { Quantifier   Connective_operator   Aggregation-function_or_list_operator } )   
                       Symbol_space_identifier   //e.g., xs:decimal, rif:iri 
                       (Name-Termula_pair  r_parts: .[1 Name, 1 Termula])   
                       (Half_link  r_link_source: 1 Termula,  r_operator: 1 Fterm_or_variable,  r_part: 1..* Link_destination, 
                          > (Minimal_half-link  r_operator: 1 Link_type,  r_part: 1 Minimal_Link_destination) ), 
                       (Link_destination  r_parts: .[0..1 Cardinality, 1 Termula],  > (Minimal_link_destination  r_part: 1 Termula)) 
                    } ) 
              Fterm_or_variable      Individual_abstract_term_of_a_grammar 
              (Operator   r_type: Operator_type,   >  r_relation  f_function  Operator_that_is_not_referable_in_RIF-FLD) 
              (Symbol_space > rif#iri rif#local xs#string xs#integer,xs#decimal,xs#double)  ) 
     }; 
 
Fterm_or_variable   //cl#Term_or_sequence_marquer, 
 = exclusion 
    { (Variable > Variable_for_a_formula)   //cl#Sequence_marquer 
       (Fterm   //cl#Term    
          > exclusion 
             { (Gterm_reference > (Constant_gTerm = ^(Gterm r_operator: 0 Relation-or-Function_type), 
                                                    = exclusion { Individual  //in the classic sense of "category that is not a type" 
                                                                          (Predicate = Type,    //cl#predicate 
                                                                             >  rdfs#Class   (Literal_or_datatype > rdfs#Literal  rdfs#Datatype) ) } ) 
                                                (Reference_to_external_gTerm >  Gterm_locator  Imported_document_reference /* ... */) ) 
                (Functional_term   r_operator: 1 (Function_type  <  Type), 
                   = exclusion { (Non-aggregate_functional_term = Expression) 
                                          (Aggregate_function_or_collection  
                                             > (Aggregate_function   r_operator: 1 Aggregation-function_operator , 
                                                    r_parts: .[1 Aggregate_function_bound_list, 1 Formula] ) 
                                                (Collection   //e.g., rdfs#Container 
                                                   = exclusion { (Unordered_collection  > Set) 
                                                                          (Ordered_collection 
                                                                              > (List  = f_function_type_("List",fd_list,.[1..* Ftermula]), 
                                                                                     = exclusion { Closed_list    Open-list } ) ) } ) ) 
                                         } ) } ) }; 

Concrete-term_for_constant_or_name   //just some examples to show that the same approach applies for concrete terms 
> (Symbol-space_name   r_identifier: 1..* Symbol_space,  
     > exclusion  { (Symbol-space_name_via_bracketed_IRI   r_part: 1 IRI_reference ) 
                             (Symbol-space_name_via_compact_URI   r_part: 1 Compact_URI)  } )  //xs:decimal, rif:iri, ... 
  (Variable_name  r_identifier: 1..* Variable,  <  ^(f_string_type_("?","","")  r_part: 1 Undelimited_variable-name) ) 
  (Constant_concrete_term  r_identifier: 1..* Constant_gTerm, 
    > (Constant_concrete_term_without_symbol-space   
           > (Constant_IRI  r_part: 1 IRI_reference ) 
              (Constant_short-name_via_compact_URI  r_part: 1 Compact_URI)  
              (Literal_or_datatype_concrete_term  r_identifier of: 1..* Literal_or_datatype, 
                > (Double_quoted_string   
                        <  ^(f_string_type_('"','','"') r_part:  1..* f_character_type_with_escape_for_(Character,"\\",'"') )) 
                   (Numeric_literal  > (Positive_integer /^ ^(<b>f_string_type</b>_("+","","") r_part: 1..* Digit)) 
                            > (Negative_integer <   ^(f_string_type_("-","","") r_part: 1..* Digit)) ) ) ) );  
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3 PRESENTING AND PARSING 

Table 8 lists major kinds of structured concrete terms 
and thus also the main presentation possibilities for 
structured abstract terms (see the 14 names in italics). 
Based on the five main categories for these concrete 
terms (see the names in bold and not in italics), it is 
easy to find the five categories of abstract terms they 
correspond to, even though such links are not shown 
in Table 8. We found that each of these concrete term 
types can be defined with only a few types of links, 
those that begin by "rc_" and that were listed in 
Table 4.  We defined some functions to provide 
shortcuts for setting those links when defining a 
particular concrete term, e.g., fc_prefix-fct-like_type. 

In our ontologies, links from a type do not specify 
that the given destination is the only one possible (to 
do so in FL, "=>" must be used instead of '":" after the 
link type name; in OWL-based models, 

owl#allValuesFrom can be used). Thus, such links 
represent "default" relationships: if a link from a type 
T specializes a link from a supertype of T, it overrides 
this inherited link. This is also true when the link type 
is functional (i.e., can have only one destination) and 
its destination for T does not specialize the destination 
for a supertype of T. The links beginning by "rc_" 
looks functional but are not: in FL, multiple 
destinations can be stated to indicate different 
presentation possibilities. However, by convention, 
such links override inherited links of the same types. 
Table 8 shows how different kinds of "default 
presentations" can be represented .in concise ways.  

In a KRL that is perfectly regular with respect to a 
particular kind of abstract/concrete term - e.g, the 
concrete "operator based terms" (those that have an 
operator in our approach) - allows the terms of this 
kind to be (re-)presented in the same way.  

Table 8: Important types of structured concrete terms (except for strings) and definition of their default presentation. 

Structured_concrete_term_that_is_not_a_string   //the examples in the comments below are in FL; with their delimiters a KRL 
 > exclusion                                                             // may have all these structures  and still only requires an LALR(1) parser 
    {  (List_cTerm  >   Enclosed_list_cTerm  /* e.g., .[A B C] */      Fct-like_list_cTerm  /* e.g., A ..[B C] */  ) 
        (Set_cTerm   >   Enclosed_set_cTerm  /* e.g., .{A B C} */     Fct-like_set_cTerm  /* e.g., A ..{B C} */ ) 
        (Positional_cTerm   //e.g., with operator "f" and parts/parameters A, B and C 
            rc_operator-name: "",   rc_operator_begin_mark: "",  rc_operator_end_mark: "",    //link types  listed in Table 3 
            rc_parts_begin-mark: "(",  rc_parts_separator: "",  rc_parts_end-mark: ")",   
            rc_infix-operator_position: 0,  //when different from 0, this indicates the operator position within the parts  
            > exclusion { (Fct-like-cTerm    
                                      = exclusion { (Prefix_fct-like-cTerm  rc_parts_begin-mark: "_(")                    //e.g.:  f _(A B C) 
                                                             (Postfix_fct-like-cTerm  rc_parts_begin-mark: "(_") } )              //e.g.:  (_ A B C)f 
                                   (List-like_fct_cTerm                                                                                                
                                      = exclusion { (List-like_prefix-fct_cTerm   rc_parts_begin-mark: ".(")             //e.g.:  .(f A B C) 
                                                             (List-like_infix-fct_cTerm   rc_parts_begin-mark: "(.",                         
                                                                                                          rc_operator_begin_mark: ".")          //e.g.:  (. A B .f  C) 
                                                             (List-like_postfix-fct_cTerm   rc_parts_begin-mark: "(..")  } )    //e.g.:  (.. A B C f) 
                                } ) 
        (Frame_cTerm   //e.g., for the example below, with operator the type "f" and with parts two half-links of type r1 and r2  
            rc_operator-name: "",   rc_operator_begin_mark: "",  rc_operator_end_mark: "",  
            rc_parts_begin-mark: "{",  rc_parts_separator: ",",  rc_parts_end-mark: "}",  //as in JSON-LD 
            rc_parts: 1..* Half-link_cTerm, 
            > exclusion { (Prefix_frame_cTerm  rc_parts_begin-mark: "_{")          //e.g.:  f_{ r1: A,   r2: B } 
                                   (List-like_frame_cTerm   rc_parts_begin-mark: "{.",                       
                                      > List-like_prefix-frame_cTerm                                      //e.g.:  {. f   r1: A,   r2: B} 
                                         List-like_infix-frame_cTerm )                                      //e.g.:  {. r_id: f,  r1: A,   r2: B} 
                                   (Postfix_frame_cTerm rc_parts_begin-mark: "{_")         //e.g.:   {_  r1: A,  r2: B } f 
                                   Alternating-XML_cTerm  //Frame in the Alternating-XML style where concept nodes alternate 
                                } )                                               // with link nodes, as in RDF/XML  
        Cterm_with_named_arguments  //quite rare in KRLs, hence not detailed in this article 
    }; 

fc_prefix-fct-like_type _[?notationSet, ?operator_name, ?begin_mark, ?separator, ?end_mark]   //call examples are in Table 9 
 :=  ^(Prefix_fct-like-cTerm   r_direct-or-indirect_part of: ?notationSet,   rc_operator-name: ?operator_name,  
             rc_parts_begin_mark: ?begin_mark,  rc_parts_separator: ?separator,   rc_parts_end_mark: ?end_mark ) 

Phrase  //any phrase has at least these presentations in these 2 kinds of notations (see Table 2), e.g., in RIF-PS and RIF-XML: 
   rc_type:  ^(fc_prefix-fct-like_type _(.{Function-like_based_notation},"","(","",")")  rc_annotation-position: -1) 
                  ^(fc_alternating-XML_type_(.{XML_based_notation},"") rc_annotation-position: 0 ); 
List  rc_type:  fc_list_type _( .{Notation}, "[", "," ,"]" );  //by default, in any notation, a list has for representation  a
 // comma separated list of element delimited by square brackets;   note that fc_list_type has no argument for an operator name 
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A perfectly regular KRL is then one which is 
perfectly regular for all the kinds of terms it allows. 
The "Triplet notation" is perfectly regular. To be so, a 
more expressive KRL would have to be fully based 
on an ontology and be Nth-order logic based. Since 
KIF re-uses the LISP notation, it is perfectly regular 
with respect to "operator based concrete terms" and 
"concrete terms for collections". Most KRLs have 
some ad hoc abstract and concrete terms. E.g., in RIF-
XML the directives of a document are presented in 
different ways: some via links, some via XML 
attributes. In RIF-PS, they are presented as positional 
terms but not links. Thanks to the fact that our general 
model represents the directives both as parts and links 
(see Table 5), these RIF predefined directives can be 

represented within/via frames as well as via positional 
terms. The first part of Table 9 shows how ad hoc 
concrete terms of particular types of KRLs can be 
specified in a concise way. The approach used to do 
so for abstract terms (see the second part of Table 5) 
is here re-used. Thus, the abstract and concrete terms 
of a KRL - or a family of KRLs - can be specified at 
the same time. This enables organized specifications 
and thus eases the comparison of KRLs. 
The second part of Table 9 shows how an ordered list 
of concrete terms can be specified for a type of 
abstract term, given a type of presentation and a list of 
notation   types.  Since  the  function   fc_r_parts  is 
recursive and, in turn, uses such specifications (links 
of type rc_parts or, for non-structured terms, links of 

Table 9: Ways to specify concrete terms for particular kinds of terms in particular notations, via our ontology. 

//Thanks to the default values in our specifications for abstract and concrete terms, only the following lines are needed for  
// defining the presentation in RIF-PS of the abstract terms shared by the  KRLs of the RIF family. For instance, the order and  
// operator names of the directives of a document can be found in Table 5. Since these directives follow the default presentation 
// for phrases in RIF-PS, nothing needs to be specified about them here. The abstract term restrictions can be specified here (as 
// illustrated below for "Frame" or separately, as illustrated by the second part of Table 5. 
RIF   r_only_such_part_of_that_type:     //because of the default values, there is no need for more than the next lines  
 ^(Phrase  rc_type: fc_prefix-fct-like_type_(.{RIF-PS},"","(","",")") )  //by default, a phrase in RIF_PS follows this style 
 ^(RIF_annotation  rc_type: fc_list_type_(.{RIF-PS},"(*","","*)"))   //this is overridden by some subtypes of Phrase, e.g., this one  
 ^(Quantification_bound_list  rc_type: fc_list_type_(.{RIF-PS},"","","")) 
 ^(Rule rc_type: fc-like_infix-fct_type_(.{RIF-PS},":-","","",""))   
 ^(Externally_defined_term  rc_type: fc_prefix-fct-like_type_(.{RIF-PS},"External","(","",")")) 
 ^(Equality_formula  rc_type: fc_list-like_infix-fct_type_(.{RIF-PS},"=","","","")) 
 ^(Subclass_formula  rc_type: fc_list-like_infix-fct_type_(.{RIF-PS},"##","","",""))   //e.g., "?t1 ## ?t2";  in FL: "?t1 < ?t2" 
 ^(Class-membership_formula  rc_type: fc_list-like_infix-fct_type_(.{RIF-PS},"#","","","")) 
 ^(Frame > Minimal_frame,   rc_type: fc_infix_list-like_frame_type_(.{RIF-PS},"","[","","]") )   //abstract+concrete specification 
 ^(Half_link rc_type: fc_half-link_type_(.{RIF-PS},"","","->","","")) 
 ^(Name-Termula_pair  rc_type: fc_list_type_(.{RIF-PS},"","->","")) 
 ^(Open_list    rc_type: fc_prefix-fct-like_type_(.{RIF-PS},"List","(","|",")")) 
 ^(Open-list_rest rc_type: fc_list_type_(.{RIF-PS},"","","","")) 
 ^(Aggregate_function rc_type: fc_prefix-fct-like_type_(.{RIF-PS},"","{","|","}")) 
 ^(Aggregate_function_bound_list rc_type: fc_fct-like_list_cTerm_(.{RIF-PS},"[","",]"")); 

RIF-FLD   r_only_such_part_of_that_type:    //only 1 example for RIF-XML: the concrete term for  Document in RIF-FLD 
  ^(Document  rc_type:  (1 fc_alternating-XML-cTerm_type_(.{RIF-XML},"Document")  rc_annotation-position: 0,  
                                                  rc_XML-attribute_type:  r_dialect  xml#base  xml#prefix,  //the last two are predefined in XML 
                                                  rc_XML-link_types: .[rif#directive rif#payload] ); 

JSON-LD_model  r_only_such_part_of_that_type: //the specifications of both the JSON-LD_model and the JSON-LD notation 
 ^(Phrase rc_type:  fc_list-like_infix-frame_type_(.{JSON-LD},"","{",",","}"))                             // except for the concrete terms 
 ^(Half_link rc_type: fc_half-link_type_(.{JSON-LD},"",":","","")) 
 ^(Module_header rc_type: fc_list-like_infix-frame_type_(.{JSON-LD},'"@context:"',"{",",","}")) 
 ^(Module_body   rc_type: fc_list_type_(.{JSON-LD},"","",","")) 
 ^(Formula  >  ^(Minimal_frame  r_operator: 1 Constant_gTerm))   //only 1 destination per link 
 ^(Fterm_or_variable >  Constant_or_set_or_closed_list) 
 ^(Set  rc_type: fc_list_type_(.{JSON-LD},"[",",","]"))  //by default in JSON-LD (whereas in JSON, this would be for a list) 
 ^(Closed_list  >  ^(Frame  r_part: 1 .[r_container, Closed_list],   //1st way to represent a list in JSON-LD 
                                             rc_type: fc_half-link_type_(.{JSON-LD},"","@container",":","@list","") ) 
                             ^(Frame  r_part: .[r_list, 1 Set],  rc_type: fc_half-link_type_(.{JSON-LD},"","@list",":","","") ) );  //2nd way 

^(Thing ?t  rc_: (a Enclosed_list_cTerm ?c  r_KRL-set: ^?notationSet))                      //"^?" prefixes variables that are implicitly 
  rc_parts: f_remove_empty_elements_in_list _( .[ (^?cb  rc_begin_mark of: ?c),        //  universally quantified 
                                                                                  fc_r_parts_(?notationSet,(^?tp r_parts of: ?t),(^?cs rc_parts_separator of: ?c)) 
                                                                                  (^?cb  rc_end_mark of: ?c) ]  ); 
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Table 10: Important links from Grammar_element, followed by an example of grammar head rule. 

Grammar_element    //currently, the specifications are mainly only for EBNF-like grammars and Lex&Yacc-like grammars
  r_part  of: 1..* Grammar,     //and conversely:    Grammar   r_part:   1..* Grammar_element; 
  > exclusion 
    { (Phrase_of_a_grammar  =  exclusion{Non-lexical-grammar_rule   Lexical-grammar_rule},  >  Head_grammar-rule )
        (Individual_gTerm_of_a_grammar = exclusion{  Lexical-grammar_individual-gTerm  //what Lex grammars handle 
                                                                                        Non-lexical-grammar_individual-gTerm } ) }; 

Non-lexical-grammar_rule  =  NLG_rule,        //this is a beginning but the representation of the whole grammar is similar 
  r_part:   1 NLG_rule_left-hand-side    1 NLG_expression     0..1 (Parsing_action_phrase < Phrase), 
  rc_:  (1 fc_list_type_(.{W3C-EBNF,XBNF,Grammar},"","","")   //like fc_prefix-fct-like-cTerm_type but without operator 
             rc_parts: .[NLG_rule_left-hand-side "::=" NLG_expression] )    //-> "A::=B"  ("Grammar "-> default presentation)
          (1 fc_list_type_(.{ISO-EBNF},"","","")                                                 
               rc_parts: .[NLG_rule_left-hand-side "=" NLG_expression] )     //-> "A = B" in ISO-EBNF 
          (1 fc_list_type_(.{Yacc, Bison},"","","")  
              rc_parts: .[NLG_rule_left-hand-side ":" NLG_expression] );    //-> "A : B" in Yacc or Bison (without parsing actions)

Grammar_for_RIF_FLD_in_RIF-PS  <  Grammar,    r_description of:  1..* (RIF-FLD < (KRL_model  r_part of: 1..* KRL)), 
   r_part: 1 (fc_NLG_rule_type_( .{RIF-PS},  "RIF-FLD_document",  .[ 0..1 Annotation  "Document"  "("   
                                                             0..1 Dialect_directive    0..1 Base_directive   0..* Prefix_directive   0..* Import_directive
                                                                                                    0..*  Remote_module_directive 0..1 Group  ")"  ]  
                                                     )  <   Head_grammar-rule ); 

 
type rc_), the specified ordered list only contains 
strings. Finally, given the value of rc_separator 
between tokens in the considered notation (i.e., the 
kinds of space characters separating them), the kinds 
of strings that can be associated to this collected list is 
specified. Thus, the whole specification is fully 
declarative. However, for concrete term generation 
purposes, choices have to be made, e.g., about space 
indentation. In our system, this is implemented via 
generation functions (also included in our ontologies) 
which recursively navigate the abstract and concrete 
specifications to find the most precise relevant 
specifications. Since our system rejects the entering of 
ambiguous knowledge (e.g., different concrete term 
specifications for a same type of abstract term and the 
same type of notation), finding the most precise 
relevant specifications was easy to implement.  

Specifying parsing rules and generating them - for 
a given abstract term and grammar notation - can be 
represented using the same techniques. The first part 
of Table 10 shows the beginning of an ontology for 
grammars. The second part shows an example of 
grammar rule (and its connection to a grammar but this 
part actually needs not be generated). Once the 
grammar rules are generated - in a way similar to 

presentation generation - the generation of their 
presentation is then done exactly as for any other 

statement, according to the given grammar notation. 
Our ontologies can be represented with OWL-2 

based KRLs. E.g., r_parts links with "lists with 
cardinalities" (e.g., .[0..1 Y, 1..* Z]) as destinations can 
be replaced by lists without cardinalities (e.g., .[Y, Z]) 

as long as r_part links are also used for specifying the 
cardinalities (e.g., X r_part: 0..1 Y, 1..* Z ). Functions 
are not mandatory since their definitions can be 
expanded whenever they are called.  
Replicating our work does not require details on the 
implementation of our system: our ontologies are the 
required declarative code. The used inference engine 
is irrelevant as long as it can handle the specifications. 
However, some readers might be interested to know 
that our translation server exploits the parser available 
at http://goldparser.org while its inference engine was 
implemented in Pascal Object (for portability 
purposes) and exploits tableaux decision procedures 
(Horrocks, 1997). This server and its inference engine 
have recently been designed by Logicells/GTH 
(http://www.mitechnologies.net/). This work on a 
generic approach for handling KRLs comes from the 
many problems encountered to handle various 
versions of FL and other KRLs in the knowledge 
sharing servers WebKB-1 (Martin and Eklund, 1999) 
and WebKB-2 (Martin, 2002, 2011). 

4 CONCLUSIONS 

One contribution of this article is a generic model for 
structured abstract or concrete terms. It is simple: only 
a few types of links and a few distinctions (Tables 4 
and 8). This operator+parameters based model 
permits to define terms in a concise and flexible way, 
and thus also their presentation and parsing. 
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A second contribution is the design of a KRL 
model ontology by representing, aligning and 
extending various KRL models, and defining their 
elements via the above cited few links, as illustrated 
by Tables 3 and 5-7. Thus, the merged models are 
also easier to re-use. 

A third one is the design of a KRL notation 
ontology - to our knowledge, the first one - based on 
the above two cited contributions, as illustrated by 
Tables 8-10. 
   These three contributions permit to solve or reduce 
the problems listed in the introduction: KRL syntactic 
translations, KRL parser implementation, dynamic 
extension of notations, etc. Thus, they provide an 
ontology-based concise alternative to the use of XML 
as a meta-language for easily creating KRLs following 
KRL ontologies. Therefore, this also complements 
GRDDL and can be seen as a new research avenue. 
This avenue is important given the frequent need for 
applications to i) integrate or easily import and export 
from/to an ever growing number of models and 
syntaxes (XML-based or not), and ii) let the users 
parameter these processes. 

Previous attempts (by the first author of this 
article) based on directly extending EBNF - or directly 
representing or generating concrete terms in a KRL or 
transformation language - required much lengthier 
specifications that were also more difficult to re-use. 

Besides its translation server, the Logicells/GTH 
company will use this work in its applications for 
them to i) collect and aggregate KRs from the 
knowledge bases they exploit, and ii) enable end-
users to adapt the input and output formats they wish 
to use or see. The goal behind these two points is to 
make these applications - and the ones they relate - 
more (re-)usable, flexible, robust and inter-operable.  

One theme of our future work on this approach will 
be the generation of parsing actions in parsing rules, 
given an implementation "data model". A second 
theme will be the representation and integration of 
more models and notations for KRLs as well as query 

languages and programming languages. A third 
theme will be the extension of our notation ontology 
into a presentation ontology with concepts from style-
sheets and, more generally, user interfaces. 
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