
K N O W L E D G E M A N A G E M E N T

Knowledge Retrieval and the
World Wide Web
Philippe Martin and Peter W. Eklund, Griffith University

L ARGE-SCALE WEB SEARCH
engines effectively retrieve entire documents,
but they are imprecise, because they do not
exploit and hence retrieve the semantic Web
document content. We cannot automatically
extract such content from general documents
yet. Manually structuring Web documents—
for example, with XML—lets us retrieve
more precise information using string- and
structure-matching tools, such as the Web
robots Harvest, WebSQL, and WebLog.
However, this approach is not scalable,
because it only retrieves fine-grained infor-
mation if the documents are thinly structured
and the querier knows their structures, exact
names, and forms.

Knowledge representation languages that
support logic inference can help us achieve
more flexible and precise knowledge repre-
sentation and retrieval. Industry is currently
developing many metadata languages to let
people index Web information resources with
knowledge representations (logical state-
ments) and store them in Web documents.
However, these metadata languages are
insufficient to satisfy several requirements
necessary to allow precise, flexible, and scal-
able information retrieval.

On the basis of ease and representational
completeness, we argue in favor of general and
intuitive knowledge representation languages

such as conceptual graphs (CGs)1 rather than
the direct use of XML-based languages. To let
users represent knowledge at the level of detail
they require, we propose simple notations for
restricted knowledge representation cases and
a technique that lets users leave knowledge
terms undeclared. We built a Web-accessible
tool (CGI server), WebKB,2,3 to support this
approach and let its users combine lexical,
structural, and knowledge-based techniques to
exploit or generate Web documents. WebKB is
an ontology server and directed Web robot.
(See the sidebar for a list of related URLs.)

Metadata language
requirements

Afirst requirement is that the metadata lan-
guage must be intuitive and concise enough

for people to use easily (after a short training
period). Most current knowledge-oriented
metadata languages are built above XML, such
as the Resource Description Framework
(RDF) and Ontology Markup Language
(OML). The choice of XML as an underlying
format lets you use standard XML tools to
exchange and parse these metadata languages.
However, because XML is verbose, the meta-
data languages built above it are verbose and
difficult to use without specialized editors.
Such editors do not eliminate the need for peo-
ple to use a language to represent knowledge
(except in application-dependent editors that
only let you fill predefined “frames”). Conse-
quently, with XML-based languages, we must
write information in two versions—one for
machines and another for humans.4Addition-
ally, standard XML tools are of little use,
because we still require specialized editors,

THE WEB IS CURRENTLY A DISTRIBUTED MASS OF SIMPLE

HYPERTEXT DOCUMENTS. LARGE-SCALE WEB SEARCH

ENGINES SUCH AS ALTAVISTA AND INFOSEEK ARE NOT CAPABLE

OF RETRIEVING PRECISE INFORMATION RESULTS. THE AUTHORS

PRESENT A NEW TOOL, WEBKB, THAT INTERPRETS SEMANTIC

STATEMENTS STORED IN WEB-ACCESSIBLE DOCUMENTS.

2 1094-7167/00/$10.00 © 2000 IEEE IEEE INTELLIGENT SYSTEMS

analyzers, and inference engines to manage
these languages.

To reduce information redundancy, Onto-
broker, an ontology that guides information
retrieval from annotated HTML documents
accessible on the Web, provides a notation for
embedding attribute-value pairs inside an
HTMLhyperlink tag. Adocument’s author can
use these tags to delimit an element. Thus, he
or she can implicitly reference each element
in the knowledge statement within the tag
enclosing the element. A wrapper has been
added to Ontobroker to generate RDF defini-
tions automatically from Ontobroker metadata.

Along this same line, a document’s author
should be allowed to make some knowledge
statements visible to readers. This is an obvi-
ous requirement when we can use an espe-
cially intuitive notation—for example, when
we can make graphics with a visual language
or write sentences with a controlled lan-
guage, a subset of natural language that elim-
inates ambiguity. This visualization feature
is also handy with any notation when the
document provides explanations about the
knowledge statements it stores. In this way,
for example, we can integrate a knowledge
base and its associated documentation within
the same document and access both using
classic searches (such as string-matching,
navigating a table of contents, and so on) and
knowledge-based searches.

Although the Ontobroker metadata lan-
guage was designed to reduce information
redundancy, users cannot show statements,
because they are within HTML tags. Further-
more, like the RDF, the Ontobroker metadata
language is essentially a notation for attribute-
value pairs. Such a representation is general
but basic and hard to read. Finally, only the
document authors can index any of its parts
because they index document elements with
HTML tags. Others are limited to only those
elements that are accessible via URLs.

A metadata language should also be suffi-
ciently precise and general enough to let users
represent any Web-accessible information at
the desired level of precision. This implies that
the metadata language is based on an expres-
sive formal model and that it has a notation
letting the user exploit the formal model’s
expressivity. Any formalism equivalent to
first-order logic that permits the use of con-
texts is an appropriate candidate. Knowledge
Interchange Format (KIF) and CGs are good
examples. It is important not to restrict users,
but for efficiency reasons, a search engine can
ignore some features in knowledge state-

ments. For example, a CG-based search
engine can ignore references to sets within
CGs and still exhibit adequate precision (the
CGs with references to sets are also retrieved).
The Ontobroker metadata language and the
RDF are general but imprecise, because they
are oriented toward representing entire docu-
ments (not arbitrary parts of them) and do not
propose conventions to represent logic-based
features, such as quantifiers and operators.
This limits the capacity of their statements.

WebKB

The three first requirements for precise,
flexible, and scalable information retrieval
imply several easy to use notations (some
intuitive, some precise and expressive) and
the possibilities to insert them anywhere in
a Web document. WebKB interprets chunks
of knowledge statements in Web documents
to satisfy these requirements. Two special
HTML marks (<KR> and </KR>) or the
strings (and)must delimit each chunk,
or group of statements. These chunks are vis-
ible unless the document’s author hides them
with HTML comment tags. The author must
specify the knowledge representation lan-
guage used in each chunk at its beginning:
<KR language=“CG”>.

Currently, WebKB can interpret the linear
notation of CGs and morereadable notations
we have invented: a formalized English and
a frame-like CG linear notation. These sim-

pler notations are automatically translated
into CGs. We chose the CG formalism, first,
because it has a graphical and linear notation
that are both concise and easily comprehen-
sible. Second, we can reuse two CG inference
engines—CoGITo5 and Peirce6—that exploit
subsumption relations defined between for-
mal terms for calculating specialization rela-
tions between graphs and therefore between
a query and facts in a knowledge base. Hence,
we can make statements and queries at dif-
ferent levels of granularity.

Another requirement is that each user
should not have to explicitly declare and orga-
nize all the terms in the knowledge statements.
Indeed, declaring and organizing terms is a
tedious and often complex work that detours
most users and is probably one of the main
reasons why so few hypertext systems have
been knowledge-based (MacWeb7 is an
exception). This requirement is a rationale for
semiformal knowledge-representation lan-
guages such as concept maps (sern.ucal-
gary.ca/~kremer/tutorials/conceptmaps/high),
as opposed to logic-based formalisms such as
KIF. The use of semi-formal statements is at
the expense of knowledge precision and
accessibility but allows rapid expression and
incremental refinement of knowledge. When
forewarned by a special command (no
decl), WebKB accepts CGs that include
some undeclared terms. Another informal fea-
ture WebKB accepts are notations for sets
within CGs: WebKB ignores them during
searches but displays each retrieved CG in the

MAY/JUNE 2000 3

Relevant URLs
AI-Trader www.vsb.informatik.uni-frankfurt.de/projects/aitrader/intro.html
Apecks ksi.cpsc.ucalgary.ca/KAW/KAW98/tennison/index.html
CGI server www.w3.org/CGI
Co4 ksi.cpsc.ucalgary.ca/KAW/KAW96/euzenat/euzenat96b.html
Conceptual Graphs meganesia.int.gu.edu.au/~phmartin/WebKB/doc/CGs.html
Harvest ww.ncsa.uiuc.edu/SDG/IT94/proceedings/searching/schwartz.

harvest/schwartz.harvest.html
Knowledge Interchange

Format logic.stanford.edu/kif/kif.html
OML www.ncgr.org/research/genex/ontology.html
Ontobroker ontobroker.aifb.uni-karlsruhe.de
Ontolingua ontology server www-KSL-SVC.stanford.edu:5915
Ontosaurus www.isi.edu/isd/ontosaurus.html
Resource Description

Framework www.w3.org/RDF
Shore www.cs.wisc.edu/shore
Tadzebao ksi.cpsc.ucalgary.ca:80/KAW/KAW98/domingue
Visual languages www.cs.orst.edu/~burnett/vpl.html
WebKB meganesia.int.gu.edu.au/~phmartin/WebKB
WebLog www.cs.concordia.ca/~special/bibdb/weblog.html
WordNet www.cogsci.princeton.edu/~wn
Word Wide Web

Consortium www.w3.org
XML www.w3.org/XML

form in which it was entered.
HTMLand XMLdo not let users reference

or index any part of a document that they
have not created. WebKB provides an index-
ation notation that lets a document element
be referred by its content or occurrence in a
document.

Simply representing knowledge within
documents is insufficient; knowledge- and
string-based commands are also necessary.
It is handy to be able to use them within doc-
uments and—if desired—have the results
automatically inserted in place of the com-
mands. The hypertext literature refers to this
technique as dynamic linkingand calls the
generated document a dynamic or virtual
document.7 This idea has many applica-
tions—for example, adapting a document’s
content to a user. Aprocedural or declarative
language should combine the commands and
their results. Web robots perform some doc-
ument generation in that way but current
metadata languages only allow knowledge
representation. WebKB lets users generate
virtual documents and combine lexical,

structural, and knowledge-based data man-
agement by proposing commands for search-
ing and joining CGs, Unix-like file manage-
ment commands working on Web-accessible
documents, and a simple Unix shell-like
script language to combine commands. Users
can insert these commands in documents or
in form-based interfaces. Figure 1 shows the
WebKB tool menu and the knowledge-based
information retrieval and handling tool, the
main general interface to WebKB.

Although this document-based approach
is handy, its scalability is limited. For exam-
ple, before using knowledge query com-
mands, the WebKB user must either directly
assert some knowledge or use loading com-
mands (such as load URL) to specify Web
documents that include the knowledge being
exploited. To let users benefit from the
knowledge of users they do not know, we
are currently extending WebKB to handle a
cooperatively built knowledge repository.

Knowledge representation

languages versus XML-based
metadata languages

To represent knowledge within docu-
ments, we advocate using knowledge repre-
sentation languages over XML-based meta-
data languages. To compare the alternatives,
Figure 2 shows how to represent a simple
sentence with CGs in WebKB and with KIF
and the RDF. The sentence is, “John believes
that Mary has a cousin who is her age.”

The CG representation in Figure 2 seems
simpler than the others. The semantic net-
work structure of CGs has three advantages:

• it restricts knowledge formation without
compromising expressivity, which tends
to computationally ease knowledge com-
parison;

• it encourages users to fully describe rela-
tions between concepts (for instance, as
opposed to languages where they can use
“slots” of frames or objects); and

• it permits a better visualization of rela-
tions between concepts.

Even if CGs seem relatively intuitive, they
are not readable by everyone. In restricted
cases, we might prefer simpler notations. For
instance, Figure 3 shows notations that
WebKB accepts as equivalent to the follow-
ing CG:

TC for KADS_conceptual_model(x)

are //note: TC means “Typical

Conditions”

[KADS_conceptual_model:*x]-

{ (Part)->[Model_of_problem_

solving_expertise];

(Part)->[Model_of_

communication_expertise];

(Part)->[Model_of_

cooperation_expertise];

(Input)<-[Knowledge_ design]-

>(Output)->[Knowledge_

base_system];

}

Undeclared terms in
knowledge statements

Users might not want to take the time to
declare and order most of the terms they use
when representing knowledge. For example,
this might be the case when a user indexes
sentences from various documents for pri-
vate knowledge organization purposes.

4 IEEE INTELLIGENT SYSTEMS

Figure 1. The WebKB tool menu and a knowledge-based information retrieval and handling tool. The example query
shows how a document containing indexing images is loaded by the browser into the WebKB processor and then how
the command spec, which looks for specializations of a conceptual graph, can be used to retrieve CGs and the
images they index. According to the value selected in the “kinds of results” option (top right), the images, but not the
knowledge statements, will be presented.

MAY/JUNE 2000 5

Figure 2. Comparing knowledge representation with the Knowledge Interchange Format, conceptual graphs, and the Resource Description Framework.

<KR language=”CG”>

load “http://www.bar.com/topLevelOntology”; //Import this ontology

Age < Property; //Declare Age as a subtype of Property

Cousin(Person,Person) {Relation type Cousin};

[Person:”John”]<-(Believer)<-[Descr: [Person:”Mary”]- { (Chrc)->[Age: *a];

(Cousin)->[Person]->(Chrc)->[*a];

}];

</KR>

<KR language=”KIF”>

load “http://www.bar.com/topLevelOntology”; //Import this ontology

(Define-Ontology Example (Slot-Constraint-Sugar topLevelOntology))

(Define-Class Age (?X) :Def (Property ?X))

(Define-Relation Cousin(?s ?p) :Def (And (Person ?s) (Person ?p)))

(Exists ((?j Person))

(And (Name ?j John) (Believer ?j ’(Exists ((?m Person) (?p Person) (?a Age))

(And (Name ?m Mary) (Chrc ?m ?a)

(Cousin ?m ?p) (Chrc ?p ?a)

))

))) </KR>

<!— RDF notation; assumed location: http://www.bar.com/example —>

<RDF xmlns=”http://www.w3.org/TR/WD-rdf-schema#”

xmlns:t=”http://www.bar.com/topLevelOntology#”>

<Class ID=”Age”><subClassOf resource=”t:Property”/></Class>

<PropertyType ID=”Cousin” comment=”Relation type Cousin”>

<range resource=”t:Person”/>

<domain resource=”t:Person”/></PropertyType> </RDF>

<RDF xmlns=”http://www.w3.org/TR/WD-rdf-schema#” xmlns:x=”http://www.bar.com/example#”

xmlns:t=”http://www.bar.com/topLevelOntology#”>

<t:Person bagID=”Statement_01”><t:Name>Mary</t:Name>

<t:Chrc><x:Age ID=”age”></x:Age></t:Chrc>

<x:Cousin><t:Person><t:Chrc resource=”x:age”/></t:Cousin>

</t:Person>

<Description aboutEach=”#Statement_01” t:Believer=”John”/> </RDF>

Figure 3. Complementary notations for simple knowledge statements.

“=>” of a “necessary” relation, “<=” of a sufficient relation) */

KADS1_conceptual_model.

Part: Model_of_problem_solving_expertise,

Model_of_communication_expertise,

Model_of_cooperation_expertise.

Input of: Knowledge_design (Output: Knowledge_base_system).

/* Text structured with HTML tags (and same conventions for relations) */

<dl><dt>KADS1_conceptual_model

<dd>Part: Model_of_problem_solving_expertise

Model_of_communication_expertise

Model_of_cooperation_expertise

<dd>Input of: Knowledge_design (Output: Knowledge_base_system)

</dl>

/* Formalized english */

Typically, a KADS1_conceptual_model has for part a model_of_problem_solving_expertise,

a model_of_communication_expertise and a model_of_cooperation_expertise.

Typically, a knowledge design has for input a KADS1_conceptual_model and has for output a

knowledge_base_system.

To permit this and still let the system per-
form some minimal semantic checks and
knowledge organization, we propose the
casual user represent knowledge with basic
declared relation types and leave undeclared
the terms used as concept types. This method
has four rationales:

Second, if knowledge statements are made
from concepts linked by basic relations—that
is, if the complexity is manifest within con-
cept types rather than in relation types—only
a limited set of relation types are necessary
for an application. WebKB already proposes
a top-level ontology of 200 basic relation
types8,9 collecting common thematic, math-
ematical, spatial, temporal, rhetorical, and
argumentative relations types.

Second, WebKB can use relation signatures
to give suitable types to the undeclared terms
used as concept types. For instance, in the top-
level ontology WebKB proposes, the relation
types Input, Output, Agent, Method,
SubProcess, and Purposeare all defined
to have a concept of type Processas the first
argument. Hence, in the previous example,
WebKB can infer that Knowledge_design
must be a subtype of Process.

Third, we merged the natural language
ontology WordNet—120,000 words linked
to 90,000 concept types—into our top-level
ontology.8,9 When users implement and ini-
tialize the WebKB shared repository with
these ontologies, WebKB will be able to
semiautomatically relate the undeclared terms
used as concept types to precise concept types
in the repository, thanks to links between
words and concept types and to constraints
imposed by the relation signatures. For exam-
ple, consider the following CG where users
have not declared the terms cat and table:

6 IEEE INTELLIGENT SYSTEMS

Figure 4. A language for knowledge indexing or connecting any Web-accessible document element.

$(Indexation

(Context: Language: CG;

Ontology: http://www.bar.com/topLevelOntology.html;

Repr_author: phmartin; Creation_date: Mon Sep 14 02:32:21 1998;

Indexed_doc: http://www.bar.com/example.html;)

(DE: {2nd occurence} the red damaged vehicle)

(Repr: [Color: red]<-(Color)<-[Vehicle]->(Attr)->[Damaged])

)$

$(DEconnection

(Context: Language: CG;

Ontology: http://www.bar.com/topLevelOntology.html;

Repr_author: phmartin; Creation_date: Mon Sep 14 02:53:36 1998;)

(DE: {Document: http://www.bar.com/example.html})

(Relation: Summary)

(DE: {Document: http//www.bar.com/example.html} {section title: Abstract})

)$

Figure 5. Images, knowledge indexations, and a customized query interface contained within one document. The sam-
ple query shows how the command spec, which looks for specializations of a conceptual graph, can be used to
retrieve images CGs indexed. (Figure 7 gives the results.)

[Cat]->(On)->[Table]. In WordNet, cat
has five meanings (feline, gossiper, x-ray,
beat, and vomit), and table has five meanings
(array, furniture, tableland, food, and post-
pone). In the WebKB ontology, the relation
type On connects a concept of type Spa-

tial_entity to another concept of the
same type. Thus, WebKB can infer that beat
and vomit are not the intended meanings for
cat, and array and postpone are not the
intended meanings for table. To further iden-
tify the intended meanings, WebKB could
prompt the following questions to the user:
“Does cat refer to feline, gossiper, x-ray, or
something else?” and “Does table refer to fur-
niture, tableland, food, or something else?”

Finally, knowledge statements are more
readily comparable if they follow the same
conventions. Thus, the convention of using
basic relations is important. (The opposite con-
vention using primitive concepts and complex
relations would be much harder to follow). For
example, consider the sentence, Mary is 20
years old. Following our conventions it is bet-
ter to use the concept type Age ([Per-
son:”Mary”]->(Chrc)->[Age:@20]),
unless a user has predefined this relation type:

relation Age (x,y) is [Age]-

{ (Chrc)->[Livingentity:*x];

(Measure)->[Integer:*y];

}

(This solution implies that the inference
engine expands the relation type Defini-

tion when comparing graphs. Few CG
engines can perform type expansion.)

By default, WebKB enforces declared
terms in the CG linear notation but permits
undeclared terms in simpler notations (see
Figure 3). The commands decl and no
decl overide this default mode, and an
exclamation mark before a type explicitly
tells the system that the type was deliberately
left undeclared. We can also use quoted sen-
tences; WebKB understands them as indi-
vidual concepts of the type Description.

Another facility of the WebKB parser is
that, like HTML browsers, it ignores HTML
tags (except definition list tags) in knowl-
edge statements. However, when these state-
ments are displayed in response to a query,
they are displayed using the exact form given
by the user, including HTML tags. Thus, the
user can combine HTML or XML features
with knowledge statements. For example, the
user can put some types in italics or make
them the source of hypertext links.

Indexing any document
element using knowledge

A document elementis any textual or
HTML data, such as a sentence, section, or
reference to an image or entire document. This
definition excludes binary data but includes
textual knowledge statements. WebKB lets
users index any DE of a Web-accessible doc-
ument (or later of our repository) with knowl-
edge statements or connect DEs by relations.
Figure 4 shows an example of each case.

XML provides more ways to isolate and
reference DEs than HTML. Because WebKB
exploits the capacities of Web browsers, the
WebKB users can use the XML mechanisms.
However, XML does not help users annotate
others’ documents, because DEs cannot be
referenced if the documents’ authors have
not been explicitly delimited them. There-
fore, the WebKB facility of referring to a DE
by specifying its content and its occurrence
number will still be useful.

Asimple example. The indexation notations
in Figure 4 let the statements and the indexed
DEs be in different documents. Thus, any
user can index any element of a document on
the Web. Figure 1 presents a general inter-
face for knowledge-based queries and shows
how a document containing knowledge must
be loaded in the WebKB processor before
being queried.

WebKB also lets the author of a document
index an image with a knowledge statement
directly stored in the “alt” field of the
HTML “ img” tag used to specify the image.
We use this special indexation case to pre-

sent a simple illustration of WebKB’s fea-
tures. The example in Figure 5 is a good syn-
thesis but does not represent the general use
of WebKB, because it mixes the indexed
source data (in this case, a collection of
images), their indexation, and a customized
interface to query them in a single document.
Figure 6 shows a part of this document that
illustrates the indexation. Figure 7 displays
the results of the query in Figure 5.

Lexical and structural query commands.
Because WebKB proposes knowledge repre-
sentation, query commands, and a script lan-
guage, we have not felt the need to give it a
lexical and structural query language as pre-
cise as those in Harvest, WebSQL, and
WebLog. Instead, we have implemented some
Unix-like text processing commands to exploit
Web-accessible documents or databases and
generate other documents—for example, cat,
grep, fgrep, diff, head, tail, awk, cd,
pwd, wc, and echo. We added the hyperlink
path exploring the command accessible-

DocFrom. This command lists the documents
directly and indirectly accessible from given
documents within a maximal number of hyper-
links. For example, the following command
lists the HTML documents accessible from
www.foo.bar/foo.html (maximum two levels)
and that include the string knowledge in their
HTML source code:

accessibleDocFrom -maxlevel 2

- HTMLonly http://www.foo.bar/

foo.html | grep knowledge

Knowledge query commands. WebKB has
commands for displaying specializations,

MAY/JUNE 2000 7

Figure 6. The HTML source code of the image indexation in Figure 5.

generalizations of a concept or relation type,
or an entire CG in a knowledge base. At pre-
sent, queries for CG specializations only
retrieve connected CGs: the processor can-
not retrieve paths between concepts speci-
fied in a query. If a retrieved CG indexes a
document element, we can present it instead
of the CG. (Figure 7 gives an example.) In
both cases, we generated hypertext links to
reach the source of each answer in its origi-
nal document—WebKB will actually present
a slightly modified copy of this original doc-
ument to instruct the Web browser to display
and highlight the selected answer in its
source document. What follows is an exam-
ple of such an interaction, assuming that
www.bar.com/example.html is the file where
the indexation in Figure 4, and Something

is the most general concept type.

> load http://www.bar.com/

example.htm

> spec [Something]->)color->

[color: red]

[Color: red]<-(Color)<-

[vehicle->(attr)->[damaged]

Source

> use Repr //display represented

Des

> spec [Something]->(Color)->

[Color: red]

the red damaged vehicle

Source

Queries for specializations give users some
freedom in the way they expresses queries;
they can do searches at a general level and
subsequently refine them according to the
results. However, they must know the exact
names of types. To improve this situation,
WebKB lets users give only a substring of a
type in a query CG if they prefixed this sub-

string by the character %. WebKB generates
the actual requests by replacing the substring
with the manually and automatically declared
types that include that substring. WebKB dis-
cards replacements that violate the con-
straints imposed by relation signatures or
individual types. Then, it displays and exe-
cutes each remaining request. For example,
spec [%thing]will trigger the generation
and execution of spec [something].

Users can combine knowledge query com-
mands with the script language to generate
complex documents, perform consistency
tests on the knowledge base, or solve prob-
lems procedurally. The WebKB site provides
many examples of queries and scripts; one
script solves the Sisyphus-I room allocation
problem (meganesia.int.gu.edu.au/~phmartin/
WebKB/kb/sisyphus1.html). You are invited
to test these examples at meganesia.int.
gu.edu.au/~phmartin/WebKB or www.int.gu.
edu.au/phmartin/WebKB.

Knowledge generation commands.The only
type of knowledge generation commands in
WebKB are commands that join CGs. We can
define various kinds of joins but WebKB only
proposes joins that, given a set of CGs, create
a new CG specializing each of the source CGs.
Although we insert the result in the CG base,
it might not represent anything true for the user
but provides a device for accelerating knowl-
edge representation. For instance, in WebKB,
we can collect and automatically merge CGs
related to a type with a command—for exam-
ple, spec [TypeX] | maxjoin. The result
can then serve as a basis for the user to create
a type definition for TypeX.

The following is a concrete example for
the maximal join command:

> maxjoin [Cat]->(On)->[Mat]

[Cat:Tom]->(Near)->[Table]

[Cat:Tom]- { (On)->[Mat];

}

A scalable cooperatively built
knowledge repository

Ontology servers support shared knowl-
edge repositories—for example, the Ontolin-
gua ontology server and Ontosaurus. How-
ever, they are not usable for managing large
quantities of knowledge, and apart form AI-
Trader,10 they do not allow the indexation
and retrieval of parts of documents. Support
of cooperation between the users is essen-

8 IEEE INTELLIGENT SYSTEMS

Figure 7. The document generated in response to Figure 5’s query.

tially limited to consistency enforcement,
annotations and structured dialogues, as in
APECKS, Co4, and Tadzebao. We are cur-
rently extending WebKB to handle a knowl-
edge repository. (For more details, see
meganesia.int.gu.edu.au/~phmartin/WebKB/
doc/coopKBbuilding.html). However, we
address scalability by

• implementing a knowledge-based system
that reuses FastDB;

• using visualization techniques (mainly
the handling of aliases for terms and the
generation of views) that avoid lexical
conflicts and let users focus on certain
kinds of knowledge;

• using protocols that let users solve
semantic conflicts by inserting new terms
and relations in the common ontology
and, in some cases, in the knowledge of
other users; and

• using conventions for representing knowl-
edge that improve the automatic compar-
ison of knowledge from different users
and hence their consistency and retrieval.

C URRENT INFORMATION retrieval
techniques are not knowledge-enabled and
hence cannot give precise answers to precise
questions. To overcome this problem, a cur-
rent trend on the Web is to let users annotate
documents using metadata languages.
WebKB lets its users combine lexical, struc-
tural, and knowledge-based techniques to
exploit or generate Web documents. The
scalable knowledge repository we are build-
ing will permit the fusion and reuse of knowl-
edge from various sources. In an operational
context, these knowledge-based features
need to be combined with more traditional
information retrieval ideas that give both
coarse-grained search capabilities and the
fine-grained, precision-based knowledge
retrieval we describe here.

References
1. J.F. Sowa, Conceptual Structures: Informa-

tion Processing in Mind and Machine, Addi-
son-Wesley, Reading, Mass., 1984.

2. P. Martin and P. Eklund, “WWW Indexation
and Document Navigation Using Conceptual
Structures,” Proc. 2nd IEEE Int’l Conf. Intel-
ligent Processing Systems, ICIPS ’98, IEEE
Press, Pistcataway. N.J., 1998, pp. 217–221.

3. P. Martin and P. Eklund, “Embedding Knowl-
edge in Web Documents,” Proc. 8th Int’l World
Wide Web Conf., Elsevier, 1999, pp. 324–341.

4. S. Decker et al., “Ontobroker: Ontology
Based Access to Distributed and Semi-Struc-
tured Information,” Semantic Issues in Mul-
timedia Systems, R. Meersman et al., eds.,
Kluwer Academic Publisher (in press),
Boston, 1999.

5. O. Haemmerlé, CoGITo: une plate-forme de
developpement de logiciels sur les graphes
conceptuels(CoGITo: A Conceptual Graph
Workbench), PhD thesis, Montpellier II
Univ., France, Jan. 1995.

6. G. Ellis, Managing Complex Objects, PhD
thesis, Dept. of Computer Science, Queens-
land University, Australia, 1995.

7. J. Nanard et al., “Integrating Knowledge-based
Hypertext and Database for Task-Oriented
Access to Documents,” Proc. DEXA’93, Lec-
ture Notes in Computer Science, Vol. 720,
Springer-Verlag, New York, 1993, pp. 721–732.

8. P. Martin, “Using the WordNet Concept Cata-
log and a Relation Hierarchy for Knowledge
Acquisition,” Proc. 4th Peirce Workshop,
1995. www.inria.fr/acacia/Publications/1995/
peirce95phm.ps.Z (current May 2000).

9. P. Martin, Exploitation de graphes con-
ceptuels et de documents structure(Exploita-
tion of Conceptual Graphs and Structures
Documents for Knowledge Acquisistion and
Information Retrieval), PhD Thesis, Univer-
sity of Nice - Sophia Antipolis, France, 1996.

10. A. Puder and K. Romer, “Generic Trading Ser-
vice in Telecommunication Platforms,” Proc.
5th Int’l Conf. Conceptual Structures, Lecture
Notes in Artifical Intelligence, Vol. 1257,
Springer-Verlag, New York, 1997, pp. 551–565.

Philippe Martin is a research fellow at Griffith
University’s Gold Coast Campus, Australia. His
main interests are knowledge representation, shar-
ing, and retrieval. He has an engineering degree
and a PhD in software engineering both from the
University of Nice–Sophia Antipolis, France. Con-
tact him at Griffith University, School of Infor-
mation Technology, PMB 50 Gold Coast MC,
QLD 9726, Australia; philippe.martin@gu.edu.au.

Peter W. Eklund is the Foundation Chair of Infor-
mation Technology at Griffith University’s Gold
Coast Campus. He is also a key researcher at the
Distributed Systems Technology Center in Bris-
bane. His main interests are knowledge ordering,
visualization, and management. He graduated in
mathematics from Wollongong University, Aus-
tralia, and has an MPhil from Brighton University,
UK, and a PhD in computer science from Linkop-
ing University, Sweden. Contact him at Griffith
University, School of Information Technology,
PMB 50 Gold Coast MC, QLD 9726, Australia;
p.eklund@gu.edu.au.

MAY/JUNE 2000 9

