Deriving Binary Relation Types From Concept Types

Philippe A. Martin ' and Jérémy Bénard *

' EA2525 LIM, ESIROI L.T., University of La Réunion, F-97490 Sainte Clotilde, France
+ adjunct researcher of the School of I.C.T. at Griffith University, Australia
Philippe. Martin @univ-reunion.fr
2 GTH, Logicells, 55 rue Labourdonnais, 97400 Saint-Denis, France
Jeremy.Benard @logicells.com

Abstract. This article describes an ontology design pattern. It helps normalizing
knowledge, reducing the introduction of new relation types and keeping all the
types organized. Thus, it leads knowledge providers to represent knowledge in
more normalized, precise and inter-related ways, hence in ways that help the
matching and exploitation of knowledge from different sources. This pattern is
also a knowledge sharing best practice that is domain and language independent.
It can be used as a criteria for measuring the quality of an ontology.

Keywords: Knowledge sharing, best practices, relation type generation

1 Introduction

Ontology Design Patterns (ODPs) are "modeling solutions to solve a recurrent ontology
design problem" [1]. Many ODPs have been found, e.g., about 160 are currently
registered in the "ODP catalog at http://ontologydesignpatterns.org". However, the
thousands of ontologies (UML schemas included) that exist on the Web are poorly
inter-connected and heterogeneous in their design. It is then difficult for automated
agents to compare or match such independently created knowledge representations
(KRs, e.g., types or statements) to know if some KRs are equivalent to others or
specializations of others. Thus, it is difficult for people and automated agents to align
and aggregate — and, thus relate, infer from, search or exploit — KRs or ontologies.

In other words, there is a need for ODPs specifically aimed for knowledge sharing
and, more precisely, for solving the problem of leading knowledge providers to create
more matchable and re-usable KRs. As later detailed, this implies leading them to
create more precise, normalized, well related and easy-to-understand KRs. In order to
be adopted, these ODPs should also be easy to follow and easy to use as criteria for
automatically measuring the quality of an ontology, to help developing an ontology or
selecting ontologies to re-use. Finally, the ODPs — or, at least the knowledge sharing
ODPs — should be well inter-related by semantic relations to help people i) know about
them and their advantages, and ii) select those they want to commit to. Then, tools can
check or enforce these commitments.

This article proposes such a knowledge sharing focused ODP which is also a best
practice (BP). This BP, which in this article will now be referred to as ABP, is: "using
binary relation types directly derived from concept types". No ODP catalog appears to
include similar ODPs. Like most BPs, it is domain and language independent and it can
be used for any dataset. The interest of using binary relation types only for KR is well
understood, if only because many KRLs (KR languages) only support binary relations.
Hence, this article does not explain this interest.

2 Deriving Relation Types from Concept Types

In this article, types that are not relation types (RTs) are refered to as "concept types"
(CTs; "classes" in RDF and OWL). A relation is not a type. Since ABP is language
independent, this article uses a general terminology. It is compatible with those for
Conceptual Graphs, RIF-FLD [2] and the W3C Framework for Logic Dialects of the
Rule Interchange Format.

When buildings RCs, it is better to use RTs with definitions than without. It makes
some information explicit and ensures that every distinction in the (subtype) hierarchy
of RTs is also included in the CT hierarchy. This last point is important for two reasons.
First, it avoids that some knowledge providers develop distinctions only in the RT
hierarchy while others develop distinctions only in the CT hierarchy, thus leading to
(automatically) undetected redundancies within a shared knowledge base or in different
ontologies. Second, it ensures that any distinction can be used — without loosing in
knowledge representation and matching possibilities — with both its CT form and its RT
form. More possibilities come from the CT form since i) unlike RTs, CTs can be
quantified in many different ways (e.g., "3 landings", "all landings" or "8% of landings"
can only be described via the CT "Landing", not the RT "r__landing"), ii) it is easier to
organize CTs (by subtype relations) than RTs, and iii) the number of used or re-usable
existing CTs is much greater than the number of used or re-usable RTs.

These advantages of using defined RTs come for free when the RTs are automatically
derived from CTs and hence defined with respect to them. Furthermore, such
derivations permits a system to display fewer types in the RT hierarchy (which is then
easier to read and grasp). Indeed, the derived RTs may be left hidden or may not have to
be created all. This last option was used in the knowledge server Ontoseek [3] and is
used in the knowledge base server WebKB (www.webkb.org; [4]). In Ontoseek, any
type derived from the noun-related part of the lexical ontology Sensus could be re-used
as a CT or a RT. WebKB also re-uses a lexical ontology derived from WordNet — the
"Multi-Source Ontology" (MSO [5]). However, unlike Ontoseek, WebKB only allows
the subtypes of certain types to be re-used as RTs. This is defined by specifications that
users can adapt. More precisely, this is defined by relation signatures which are directly
associated to certain top-level CTs. The MSO includes more than 75,000 categories
(mainly types) and relates them by more than 100,000 relations.

Table 1 illustrates the approach and then gives rules that would actually generate the
derived RTs. These rules permit to formalize the framework. They rely on the functions

Table 1. RIF-FLD PS rules for automatically deriving a binary RT from a CT (and, if needed,
doing so for all its subtypes) based on a kind of signature associated to this CT. In these examples,
the types created by the authors of this article have no prefix to indicate their namespace. RIF-FLD
PS, the Presentation Syntax of RIF-FLD, is used because it is both expressive and rather intuitive.
RT names begin by "r__" and function names begin by "f__". Logical rules are used since RIF-
means "<=".

FLD is used but here logical equivalences could also be used. ":-"

The derived RT does not have to be explicitly defined. Its signature is directly associated to
the CT via a relation of type r__signature_for_derived_binary_relation or a function of type
f__derived_binary_relation. Thanks to their definitions, the derived RT is automatically
created (see the next paragraph in bold characters). A CT may have different RT signatures
associated to it, as long as the signatures are "un-comparable"” (i.e., as long as none
specializes another).

r__signature_for_derived_binary_relation (Father List (Animal Male))
//-> derives the RT r__father that has for domain an Animal and range a Male

Forall ?t (r__signature_for_derived_binary_relation (?t List (Thing ?t))
;- ?t ## thing_usable_for_deriving_a_binary_relation_with_it_as_destination
//"2st ## 2t" <=> subtypeOf (?st ?t); this rule derives the expected RT for each subtype of
// Thing_usable_for_deriving_a_binary_relation_with_it_as_destination

Forall ?t Exists ?r
And (?r=f__ derived_binary_relation (?t List (Agent Object))
Forall ?agent ?object And (r__agent (?t ?agent) r__ object (?process ?object)
) :- ?r(Pagent ?object)
) :- ?t ## Process //-> derives the expected RT for each subtype of Process

Furthermore, the derived RTs have the same subtype relations as the CTs they derive from.
However, to keep things simple, it is here assumed that no RT with the same name as the
derived RT has previously been manually created. The RT name is created by taking the CT
name, lowering its initial and prefixing it with "r__". The functions

f__denotation_of type_name, f__type_name, f__cons, f__cdr, f__lowercase used below are
identical to their counterparts (without the prefix "f__") in KIF.

Forall ?t ?r__t ?t_domain ?t_range
?t_supertype ?r__t supertype ?t_sup_domain ?t_sup_range (
And (rdfs:domain (?r__t ?t_domain) rdfs:range (°r__t ?t_range)
?r_t = f_denotation_of_type_name
(f__cons (f__lowercase (f__car (f__type_name (?t)))
f _cdr(f_name(?t)))
r__t # ?r__t_supertype
- And (?t # ?t_supertype
?r__t_supertype = f__ derived_binary_relation
(?t_supertype
List (?t_sup_domain ?t_sup_range))))
- ?r_t = f__derived_binary_relation (?t List (?t_domain ?t_range)))
Forall ?t ?t_domain ?t_range (
Exists ?r__t (?r__t = f__derived_binary_relation (?t List (?t_domain ?t_range)))

:- f__signature_for_derived_binary_relation (?t List (?t_domain ?t_range)))

f_type_name and f__denotation_of _type_name which are identical to the KIF
functions name and denotation formalized in the documentation of KIF [6]. In WebKB,
no such rules are executed (a more efficient and ad-hoc process is used): during the
analysis of RCs, when a CT is used in places where RTs are expected, WebKB simply
checks that one of the signatures associated to the CT is respected and acts as if the
relevant derived RT was actually used. Thus, in WebKB, there is no need to use the
actual names of the virtually derived RTs: the CT names can be used directly. As
described by Table 1, signatures are inherited along subtype relations between CTs and
an error is generated if a CT is associated to two signatures that are "comparable". This
approach and ODP seem original.

3 Acknowledgment

We thank one of our reviewers for its very positive review on our initially submitted
article.

4 References

1. Presutti, V., Gangemi, V.: Content Ontology Design Patterns as Practical Building Blocks for
Web Ontologies. In: ER 2008, Spaccapietra S. et al. (eds.)

2. Boley, H., Kifer, M. (eds.): RIF Framework for Logic Dialects (2nd edition). W3C
Recommendation, http://www.w3.0rg/TR/2013/REC-rif-fld-20130205/ (2013)

3. Guarino, N., Masolo, C., Vetere, G.: Ontoseek: Content-based Access to the Web. IEEE
Intelligent Systems, vol. 14, No. 3, pp. 70-80 (1999)

4. Martin, Ph.: Collaborative knowledge sharing and editing, 1JCSIS, vol. 6, Issue 1, pp. 14-29
(2011)

5. Martin, Ph.: Correction and Extension of WordNet 1.7. In: LNAI 2746, pp. 160-173. See also
http://www.webkb.org/doc/MSO.html

6. Genesereth, M., Fikes R.: Knowledge Interchange Format, Version 3.0, Reference Manual.
Technical Report, Logic-92-1, Stanford Uni., http://www.cs.umbc.edu/kse/ (1992)

