
Conventions and Notations for
Knowledge Representation and Retrieval

Philippe Martin

Griffith University, School of Information Technology,
PMB 50 Gold Coast MC, QLD 9726 Australia

philippe.martin@gu.edu.au

Abstract. Much research has focused on the problem of knowledge ac-
cessibility, sharing and reuse. Specific languages (e.g. KIF, CG, RDF)
and ontologies have been proposed. Common characteristics, conven-
tions or ontological distinctions are beginning to emerge. Since know-
ledge providers (humans and software agents) must follow common con-
ventions for the knowledge to be widely accessed and re-used, we propose
lexical, structural, semantic and ontological conventions based on vari-
ous knowledge representation projects and our own research. These are
minimal conventions that can be followed by most and cover the most
common knowledge representation cases. However, agreement and re-
finements are still required. We also show that a notation can be both
readable and expressive by quickly presenting two notations – Forma-
lized English (FE) and Frame-CG (FCG) – that we have derived from
CG [9] and Frame-Logics [4]. These notations support the above conven-
tions, and are implemented in our Web-based knowledge representation
and document indexation tool, WebKB1 [7].

1 Introduction

In [7], we argued that to permit precise, flexible and scalable retrieval and ex-
ploitation of knowledge representations (e.g. conceptual ontologies) and data in-
dexed by them, the used metadata/knowledge representation languages should
possess an expressive, intuitive and concise linear form; permit the indexation of
any document and part of document; support the use of undeclared terms; and
permit the specification of paths in a semantic network. We argued against the
direct use of XML-based languages such as RDF2, and shown how WebKB and
its languages satisfy these requirements.

Precise, flexible and scalable knowledge retrieval also requires the agents (e.g.
Web users or robots) that generate knowledge representations to follow conven-
tions to permit subsequent comparison of the representations, and therefore their
retrieval and merging. In this paper, we propose lexical, structural, semantic and
ontological conventions based on various knowledge representation projects (es-
pecially Conceptual Graphs [9] and RDF [1]) as well as our own research [5] [6].
1 http://meganesia.int.gu.edu.au/˜phmartin/WebKB/
2 http://www.w3.org/RDF/

We also show that a notation can be both readable and expressive by intro-
ducing two notations – Formalized English (FE) and Frame-CG (FCG) – that we
derived from CG and Frame-Logics. These notations support the above conven-
tions and associated facilities, and are implemented in our Web-based knowledge
representation and document indexation tool, WebKB [7].

2 General conventions

Our conventions are general but, since we use the Conceptual Graph [CG] ter-
minology to refer to components of knowledge representations, we assume these
representations can be translated into such a directed graph model.

2.1 Lexical normalisation

InterCap style for identifiers XML3 has become the de facto standard for
data exchange, and RDF4 and its XML notation (“RDF/XML”) will probably
become the standard for metadata exchange. Therefore, it seems important that
identifiers within knowledge representations have legal XML names. This is not
particularly restrictive (URLs are permitted). More importantly, the “InterCap
style” has been adopted in RDF for expressing terms, with a lower case first letter
for relation types5 – as in rhetoricalRelation and subClassOf – and an upper case
first letter for concept types6 – as in TaxiDriver. These naming conventions have
also been adopted by the “Meta Content Framework Using XML”7.

High-level lexical facilities To be used widely and reduce lexical problems,
high-level languages or query interfaces should provide lexical facilities for the
user. For instance, as is the case in WebKB, language analyzers should automat-
ically normalize identifiers that include uppercase letters, dashes or underscores
into the Intercap style, as well as exploit user-defined aliases.

Such analyzers also accept queries or representations that use undeclared
type names (e.g. common words) when the relevant type names can be auto-
matically guessed via the structural and semantic constraints in the queries or
representations and the ontologies they are based upon. When different inter-
pretations are possible, the user should be alerted to make a choice. This last
facility, detailed in [7], is particularly interesting when the exploited ontologies
reuse a natural language lexical database such as WordNet8: it spares the user
the complex and tedious work of declaring and organizing each term used. This
facility (along with high-level notations and interfaces) seems an essential step to
encourage Web (human) users to build knowledge representations. Similar ideas
for the exploitation of lexical databases such as WordNet are developed in [3].
3 http://www.w3.org/XML/
4 http://www.w3.org/RDF/
5 http://www.w3.org/TR/REC-rdf-syntax/#usage
6 http://www.w3.org/TR/1998/WD-rdf-schema/#intro
7 http://www.w3.org/TR/NOTE-MCF-XML/#secA.
8 http://www.cogsci.princeton.edu/˜wn/

Nouns for identifiers Generally a sentence can be rephrased to avoid the
use of adjectives and verbs (with the exception of “to be” and “to have”). For
instance, “A cat named Tom jumps toward a wooden table” may be rephrased
into “The cat which has for name Tom is agent of a jump that has for destination
a table the material of which is some wood”. This sentence – which is a correct
sentence in Formalized English (FE) – seems unnatural but makes the concepts
and their relations explicit and therefore exploitable by an automated analyzer.

The convention of using nouns, compound nouns or verb nominal forms when-
ever possible within representations not only makes them more explicit, it also
efficiently reduces the lexical and structural ways they may be expressed. It
therefore increases the possibilities of matching them.

Concept types denoted by adjectives9 can rarely be organized by generaliza-
tion relations but may be decomposed into concept types denoted by nouns. Con-
cept types denoted by verbs can be organized by generalization relations (though
the organization of the top-level types is difficult) but cannot be inserted into the
hierarchy of concept types denoted by nouns (and therefore cannot be compared
with them) unless verb nominal forms are used. These nominal forms, e.g. Driv-
ing, also recall the need to represent the time-frame or frequency of the referred
processes. For similar reasons, value restrictors should also be represented via
noun phrases, e.g. ImportantWeightForAMouse and ImportantWeightForAnEle-
phant, rather than via adjectives such as Important.

Most identifiers in current ontologies are nouns (e.g. the Dublin Core10 or
the Upper Cyc Ontology11), even in relation type ontologies such as the Gen-
eralized Upper Model12 relation hierarchy. Avoiding adverbs for relation type
names is sometimes difficult, e.g. for spatial/temporal relations. However, this
does not create problems in organizing relation types by generalization relations.
What should be avoided is the introduction of relation type names such as is-
DefinedBy and seeAlso. Better names are definition and additionalInformation.
These names are consistent with the usual reading conventions (e.g. in CG [9]
and RDF13) of graph triplets {concept source, relation, concept destination}:
“<concept source> HAS FOR <relation> <concept destination>” or
“<concept source> IS <relation> <concept destination>” or
“<concept destination> IS THE <relation> OF <concept destination>”.

Singular nouns for identifiers Most identifiers in ontologies are singular
nouns. Category names must be in the singular in the Meta Content Framework
Using XML. It is therefore better to avoid the introduction of plural identifiers
whenever possible, e.g. by using keywords within representations such as the CG
keyword Dist that specifies that a distributive referent is distributive.
9 We refer to types representing the meanings of some adjectives, not misnamed types

such as Abstract when “Abstract Entity” is actually the intended meaning
10 http://purl.oclc.org/dc/
11 http://www.cyc.com/cyc-2-1/cover.html
12 http://www.darmstadt.gmd.de/publish/komet/gen-um/node11.html
13 http://www.w3.org/TR/REC-rdf-syntax/#statement

2.2 Structural and semantic normalisation

We have seen that lexical conventions and facilities influence the structural and
semantic aspects of representations. We now focus on these aspects.

First-class relations In CG and RDF, a relation is not local to an object, it
is a first-class object itself and can be connected to any instance of the types
given in the signature of the relation. This permits distributive developments
(since anyone may represent anything about any object) and eases the process
of comparing representations (since all terms are inter-related). This still per-
mits the representation of relations necessarily or typically associated to objects
of a particular type. Thus, though most frame-based systems also allow local
relations, it is better to avoid them for the sake of knowledge reuse.

Binary basic relations Most frame-based models (including RDF) only have
binary and unary relations. It is therefore better for knowledge reuse to use only
unary or binary relations in languages such as CG that allow n-ary relations.
Relationships of arity greater than 2 may always be represented using structured
objects or collections, or more primitive binary relations. For instance, “the point
A is between the points B and C” may be represented using the binary relation
type between and a collection object grouping B and C, or using the relation
types left and right, above and under, etc. Most often, decomposition makes a
representation more explicit, precise and comparable with other representations.

Thus, relations should rather refer to simple/primitive relationships. As a rule
of thumb, relations should not refer to processes and should rather be named with
simple “relational nouns”, e.g. part and characteristic. Some complex relational
nouns such as child and driver are often too handy to be avoided but imply
additional lexical or structural facilities (e.g. those of Ontoseek [3]).

Avoid disjunctions, negations and collections Representations that in-
clude disjunctions, negations or collections are generally less efficiently exploitable
for logical inference than conjunctive existential formulas and IF-THEN rules
based on these formulas 14.

It is often possible to avoid disjunctions and negations without loss of ex-
pressivity using IF-THEN rules or by exploiting type hierarchies. For instance,
instead of writing that an object X is an instance of DirectFlight OR of In-
directFlight, it is better to declare X as an instance of a type Flight that has
DirectFlight and IndirectFlight as exclusive subtypes (i.e. types that cannot have
common subtypes or instances). Exclusion links between types or in some cases
between whole formulas are kinds of negations that can be handled efficiently,
and are included in many expressive but efficient logic models, e.g. Courteous
logic on which the Business Rules Markup Language (BRML) is based.

14 http://www.oasis-open.org/cover/brml.html

The introduction of identifiers for collections may also be avoided using key-
words such as Dist to specify a distibutive interpretation or Col for a collective
interpretation. Type definitions are also a way of representing facts about col-
lections of objects that knowledge representation systems generally handle more
efficiently than if collections are directly used.

Contexts are often unavoidable for expressivity sake but they can be handled
efficiently if treated as positive contexts [2], that is, when only their structures
are taken into account, and not the special semantics of the terms they include.

For efficiency reasons again, many knowledge representation systems, espe-
cially frame-based systems, work on rooted graphs. In a rooted graph, there is
a head node representing the “central” object of the representation, the object
the other nodes detail. Therefore, to help the translations of representations for
various kinds of systems, it seems better to begin each representation with its
central object, whatever the language used.

Precision, term definitions and constraints The more precise the repre-
sentations are, the less chance they conflict with each other and the more they
can be cross-checked, merged and exploited to answer queries adequately. Hence,
constraints should be associated to types, and representations should rather be
contextualized in space, time and author origin. No relevant concept should be
implicit. For instance, instead of representing that “birds fly”, it seems better to
represent that “a study made by Dr Foo (Foo@bird.org) found that in 1999, 93%
of healthy birds can fly” and categorize the species of birds under the exclusive
subtypes BirdWhichCanNormallyFly and BirdWhichCannotNormallyFly.

Most notations make it very difficult to represent such precise statements.
Even Sowa’s CG linear format [9] needs to be extended to refer to the distributive
interpretation of 93% of all instances of a type X; we use the form “[X: ∀ @93%]”
in the CG representation of the previous example: 15

[Description: [Situation: [PhysicalPossibility:
[[Bird:λ]->(Chrc)->[Health:@good]: ∀ @93%]<-(Agent)<-[Flight]

]]->(Time)->[Date:"1999"]
]->(Source)->[Study]->(Author)->[Person: Foo@bird.org]

In Section 3.1 below, we give the translations of this example in FCG and FE
to show that more intuitive notations are possible and useful.

Before doing so, let us note that representations which include precise domain-
oriented terms should still be retrievable via queries which include more general
natural language terms. A way to do this is to specialize the terms of a natural
language ontology such as WordNet with the domain-oriented terms. Extend-
ing such an ontology is often quicker (and safer) than creating an ontology
from scratch, ensures a better reusability of the representations and automatic
comparisons with representations based on the same ontology. These issues are
discussed and implemented in Ontoloom/Powerloom16.
15 It would have been very difficult to represent “birds of most species can fly” and the

result hardly exploitable for logical inference.
16 http://www.isi.edu/isd/OntoLoom/hpkb/OntoLoom.html#RTFToC18

3 Notations

To permit Web users precisely index Web documents, or more generally, rep-
resent knowledge, the notation(s) they use needs to be both expressive and
intuitive. Otherwise, they will not use it or they will be forced or encouraged
to represent information inadequately, which greatly reduces the value of the
representations. A usual concern is that an increase in expressiveness leads to
a model and a language too complex to handle efficiently. Actually, with struc-
tured models such as frames, RDF or CG, an inference engine may easily take
more or less features into account to provide the degree of precision/efficiency
required by a function or an application. For instance, a search engine can do a
good and efficient job exploiting simple structure matching techniques and con-
sidering all contexts (e.g. modalities and negation) as positive contexts, so long
as the retrieved representations are displayed with their associated contexts.

In this section, we list knowledge representation cases that are common in
natural language sentences but rarely taken into account by current general-
purpose knowledge representation languages. We do not assume any kind of
exploitation or formalization. We simply show how these cases can be repre-
sented in the CG linear form (or point out the need for additional syntactic
sugar), and how the FCG or FE notations are often more readable. FCG and
FE are alternative notations to the CG linear form (and therefore CGIF). Be-
cause arrows have been removed and common English articles or other “modifier”
words can be used as quantifiers, these notations are simpler than the CG linear
form (and sometimes more expressive where set quantification and modalities
are concerned). A similar “frame-like” notation using “a”, “the” and “every” as
quantifier Keywords is also proposed by the Knowledge Machine [8] for readabil-
ity reasons (however, it does not have other quantifiers). We cannot detail these
notations here but their EBNF grammars and the Yacc+Lex grammars for their
translation to CG are Web-accessible 17. All the terms in our examples – apart
from keywords, URLs and some relation types – are WordNet nouns.

3.1 Presentation of FCG and FE

Here is the previous example represented in FE then in FCG.
‘‘‘93% of [bird with chrc a good health] can be agent of a flight’
time 1999’ with source a study that has for author Foo@bird.org’.

[[[93% of(bird,chrc:a good health),agent of#:a flight],time:1999],
source: (a study, author: Foo@bird.org)]

Contexts are delimited by square brackets in FCG and quotes in FE. At
the same context level, structuration is done via parenthesis in FCG and the
use of comma or keyword “and” in FE. Lambda-expressions are delimited by
parenthesis in FCG, square brackets in FE. Apart from these distinctions, both
notations share the same features: the quantifier keywords (e.g. “a” and “the”
17 http://meganesia.int.gu.edu.au/˜phmartin/WebKB/doc/grammars/

as existential quantifiers, “several” and “at least” as collection quantifiers), the
lexical facilities (e.g. the automatic normalization of terms) and other facilities
(e.g. the automatic typing of contexts – and creation of intermediary contexts if
necessary – according to the signatures of the relations connected to them).

3.2 Existential statements and contexts

Most general-purpose knowledge representation languages permit the represen-
tation of existential statements and contexts, e.g. CG, KIF and RDF. Contexts
are needed for referring to the source of a representation in a document and it is
handy to be able to use the name (or URL) of the referred document as individ-
ual identifier. The next FCG illustrates how a representation process can itself
be represented (using a concept) and how this permits to explicit details of the
representation (using binary relations). It also show that an arbitrary sentence
of a document (here the title) can be represented. Special delimiters – here “$(“
and “)$” – are needed to encapsulate sentences in various kinds of languages.

[a representation, agent: philippe.martin@gu.edu.au, language: FE,
ontology: www.int.gu.edu.au/~phmartin/WebKB/kb/KADS1ontol.html,
creationDate: "21/01/1999", expirationDate: "22/7/9999",
source: [http://www.int.gu.edu.au/~phmartin/WebKB/kb/KADS1.html,

part: the title],
object: $(KADS-I models in CG)$, /* <- text of the title */
result: $(KADS-I has for part several models that are object of

a representation which has for language CG.)$ /* FE repr. */
]

3.3 Collections and intervals

Sowa [9] uses the symbols Dist, Col and Cum to explicit the distributive, collec-
tive or cumulative interpretation of a collection referent. It seems clear that Dist
or Col should not appear in more than one concept of a CG since this would lead
to ambiguities, but the use of coreferences between collection concepts has not
been explicited by Sowa. The following example illustrates the need to explicit
some collection related features. (“E:” introduces the English version).
E: Together, Fred, Tom and another man approved a resolution.

A certain resolution was approved by each of them.
CG: [Person: *s Col{Fred,Tom,*}@3]<-(approver)<-[Resolution]

[Set:*s] [*s Dist{*}]<-(approver)<-[Resolution: @certain]
FCG: [*g the group of persons *p {Fred,Tom,a man},

approver of: a resolution] [a resolution, approver: *p]

We used the CG [Set:*g] to specify that each member of the group *g is differ-
ent. In FCG, a collection is by default a set (the distributive interpretation is the
default but the collective interpretation can be specified with the keyword group
and referred to via a variable – here *g). We used Sowa’s keyword @certain to

specify that each member approved the same resolution. In FCG, this is ex-
plicited via the order of the concepts (as it is in English; we have adopted this
solution because it is intuitive and it also permits us to combine other kinds of
quantifiers as the next examples show). The ’s’ at the end of the terms used for
representing collections are automatically removed by the FCG parser.

Many keywords or special types need to be specified to permit the explici-
tation of collections, that is, (i) their kinds: Set, Bag, OR-Bag (“alternatives”
in RDF: rdf:Alt), XOR-set, etc. (ii) their restrictors: most, mostly, at most,
dozens, etc. Below is an example involving two collections (“*r” is supposed
pre-declared). The CG statement is ambiguous (the scopes of the quantifiers are
not explicit).
E: At least 3 persons, including Fred,

have each approved most of the resolutions "r".
CG: [Person: Dist{Fred,*}@>=3]<-(Approver)<-[*r {*}@most]
FCG: [most of *r, approver: at least 3 persons {Fred,*}]

As shown in the next two examples, intervals can be represented (at least in
FCG) using XOR-sets or normal sets.
E: Tom ran between 14 min and 15 min.
FCG: [Tom, agent of: (a run, time: 14 to 15 minutes)]

E: Tom ran between 14hrs and 15hrs (2pm to 3pm).
FCG: [Tom,agent of:(a run,time: from 14 to 15 hour__time_of_day)]

3.4 Universal quantifiers

As we have seen in our first example, the keywords for collections are handy
to reuse for quantifying over the instances of a type. If no restrictor is used
(as in [File:∀]->(Author)->[Agent]), relations necessarily connected to the
instances of a type (i.e. necessary conditions) are defined. The use of restrictors
such as “most” or percentages are a way to define “typical” relations. Number
intervals and keywords such as “at least” and “at most” may be used for
representing relationships of “entity-relationships” models, as in the FCG
[any company, employee: at least 1 person].

Modalities and physical possibilities may be represented via contexts. For
readability and normalisation reasons, we introduced special keywords in FE
(can and may) and FCG (#: and <=). Thus, the following FCG represents that
“any description describes something and may be believed by a cognitive agent”:
[any description, descr of: a thing, believer<= a cognitive_agent]

For the same reasons, we allowed some operators (=>, <=>, <=, =, !=, <,
=<, >, >=) to be used as relations types or to be used as aliases for other type
names. Here is an example of the use of the logical operator => and of the use
of coreference for writing a readable second-order statement.
[[a relationType *r, chrc: transitive], =>
[[a thing *x, *r: (a thing *y, *r: a thing *z)], => [*x, *r: *z]]
]

4 Terms and conventions for ontological cases

We now focus on how objects of certain categories can be inter-related.

4.1 Some general categories

Relatively few top-level concept types are required for the signatures of most
kinds of relations useful for general knowledge representation, e.g. for the repre-
sentation of natural language sentences or images from documents. These con-
cept types and the constraints associated to them (e.g. the exclusion links be-
tween them) are useful for organizing ontologies, guiding knowledge modelling
and preventing certain inconsistencies. We detailed this in [7] and introduced a
top-level ontology of 150 top-level concept types and 150 basic relation types.
We have used these concept types for organizing the upper levels of the WordNet
ontology. In the remainder of this article, we focus on the most generic of these
concept types and represent the necessary or possible relationships between their
instances. In this way, we also propose a model for knowledge representation.

Before doing so, let us highlight with an example how these general types help
render precise the knowledge representation process. We obtained a hierarchy of
terms about computer and network technology. It appeared that the hierarchy
was not a generalization hierarchy since it mixed various kinds of objects and
therefore various kinds of relations. Here is an extract annotated with a general
category for each term.

Computing //process or domain?
Computer_hardware //physical object!
Compiler //hardware or software?

Computer_software //description!
Software_language //description medium!
Applications //process description (may or may not be software)!

Networking //process or domain?

Here is, represented in FCG, a part of the ontology that we have built to
make explicit the general category of each of the above terms and thus permit
semantic checks and the use of relations associated to the general categories. The
author of the previous hierarchy had to be contacted to determine what some
of the terms meant. Indentation is only for presentation purposes. 18

[Domain_object, subtype: {Computing_object Networking_object}]
[Networking_object,partition:{{Network_software,Network_hardware}}]

[Physical_entity, subtype: Hardware]
[Hardware, subtype: {Computer_hardware, Network_hardware}]
[Network_hardware, partition: {{Local area network, Switch}}]

[Description, subtype: {Software, Application}]
[Descr_medium, subtype: {Software_language, Network_language}]

18 The relation partition connects a type to a set of partitions, each being a set of
exclusive types. Thus, two pairs of brackets are required even for a single partition.

Here are the generalization and exclusion relations between our most generic
concept types. Indentation is only for presentation.

[Thing (^the supertype of all first order concept types^),
partition: { {Situation, Entity}, {Thing_playing_a_role} }]

[Situation (^a thing that occurs in a region of time and space^),
partition: {{State, Process}, {Phenomenon},

{Situation_playing_a_role}}]

[Entity (^a thing that may be involved in a situation^),
partition:{{Information_entity,Temporal_entity,Spatial_entity},

{Collection}, {Entity_playing_a_role} }]

[Spatial_entity (^an entity that occupies a space region^),
partition: {{Space_location, Physical_entity,

Imaginary_spatial_entity}}]

[Physical_entity (^a spatial entity made of matter^),
partition: {{Inanimate_object, Living_thing},

{Goal_directed_entity(^cognitive entity^)}}]

[Information_entity (^for information or its representations^),
partition: { {Description, Descr_container,

Characteristic, Measure, Measure_unit} }]

[Description (^description of a situation^),
partition: { {Description_content, Description_medium} }]

[Description_content,partition:{{Belief,Hypothesis,
Narration,Argument}}]

[Description_medium,partition:{{Symbol,Syntax,Language,
Abstract_data_type,Script}}]

[Description_container,partition:{{File,Image,Hologram,
Document_element}}]

[Characteristic (^ a dimension of something ^),
partition: {{Psychological_characteristic,

Physical_characteristic, Situation_characteristic}}]

[Measure, partition: {{Psychological_measure,
Physical_measure,Situation_measure}}]

[Measure_unit, partition: {{Psychological_measure_unit,
Physical_measure_unit,Situation_measure_unit}}]

[Thing_playing_a_role (^subcategorisation is domain-dependent^)
partition: {{Domain_object},{Thing_needed_for_a_process},

{Entity_playing_a_role,Situation_playing_a_role}}]

4.2 Descriptions

We now focus on necessary and possible relationships from concepts of the types
listed above. We begin with “descriptions” and related objects.
[any thing,
descr <= a description, //anything may be described
descr_in<= a descr_container, //e.g. in a file, a hologram

]

[any description, //or "proposition"
descr of : a thing,
descr_medium : a descr_medium, //symbols or a language
descr_container: a descr_container, //e.g. in a file
author : 1 entity, //unique author
believer <= a cognitive_agent, modality <= a modality,
logical_relation<=a description, rhetorical_relation<=a description

]

[any descr_container, descr_support: a physical_entity,
descr_in of: a thing]

[any descr_medium, descr_medium of: a thing]
[[a thing *t, descr_in: a descr_container *c],
<=> [*t, descr: (a description, descr_container: *c)]]

Examples of logical relation types are Or and Xor. Examples of rhetorical
relation types are summary, motivation and antithesis.

4.3 Characteristics and measures

When representing characteristics, the characteristic itself should be distinguished
from its measure(s), as in [a pen, physChrc: (a length, measure: 12 cm)].
Since this habit does not come naturally, abbreviations such as the following
should probably be adopted as conventions: [a pen, length: 12 cm]. Howe-
ver, this implies additional constraints on the ontology and on its exploitation
by the analyzers, e.g. Length should be declared as a subtype of a type Charac-
teristic and this would have to be a predefined type in any analyzer. Here are
relations for explicit representations.
[any thing, chrc <= a characteristic] //e.g. speed, ingenuity
[any characteristic, measure <= a measure, chrc of <= a thing]
[any measure, quantity: a number, unit: a measure_unit,

measure of: a characteristic]

[any physical_entity, physChrc <= a physical_characteristic]
[any goal_directed_entity,physChrc<=a psychological_characteristic]

A lot of concept types may be found in WordNet for physical or psychological
features, e.g. Memory and Cognition, but unfortunately those types are not well
organized and often mixed with misclassified types such as Mind, Lexicon and
Structure.

4.4 Situations, processes and temporal entities

Here are some representations of relationships that are – or may be – connected
to situations, processes and temporal entities. Most of the relations types were
proposed by [9].
[any situation,

s_succ of: a situation, s_succ: a situation,
location : a spatial_entity,
time: a temporal_entity, duration : a duration,
situationChrc<= a situation_characteristic

]
[any temporal_entity,

time of <= a situation, duration of <= a situation,
temporal_order_relation <= a temporal_entity

]
[any process,

triggering_event<= an event, ending_event <= an event,
ending <= a state, ending of <= a state,
precondition <= a state, postcondition <= a state,
initiator <= a goal_directed_agent, agent <= an entity,
instrument <= an entity, object <= a thing,
experiencer<= a conscious_agent, recipient <= an agent,
result <= a thing, sub_process<= a process,
manner <= a situation_characteristic,
method <= a description, source <= a spatial_entity,
destination<= a spatial_entity, path <= a spatial_entity

]

The relation types input and output may respectively be declared as subtypes
of object and result. Further specializations are input output, object to modify and
object to mute.

Given we may use intervals and exclusive sets for representing time concepts,
only two relation types seem necessary between situations and temporal entities:
time and duration. Here are examples of two typical cases.
E: On the 21/12/1999, John went to his office between 13h and 14h.
FCG: [[a travel, agent: John, destination: (an office, owner: John),

time: 13 to 14 hour], time: "21/12/1999"]

E: John usually takes 20 min or 40 min to go to his office.
FCG: [most of (travel, agent: John,

destination: (an office, owner: John)),
duration: {20 min | 40 min}]

These examples do not violate the signatures of time and duration. The
following representation, which uses a context, should be considered by the ana-
lyzers as equivalent to the first of the above two examples.
[[John, agent of: travel, destination: (an office, owner: John)],

time: 13 to 14 hour]

4.5 Miscellaneous

Here are additional common kinds of relationships.

[any thing, part <= a thing] //anything may have at least 1 part
[any physical_entity, material: a physical_entity]
[any collection, subset <= a collection,

element<= a thing, count: a natural]

[Order_relation, domain: Thing, range: Thing,
partition: { {Spatial_order_relation, Temporal_order_relation},

{Meet,In,Near,Before,After} }]
[Spatial_order_relation, subtype: {On,Above,Below}]
[On, subtype of: {Meet,Above}]

We have defined relation types such as meet and near as direct subtypes of
order relation and allowed them to connect any pair of concepts. Specializations
of these types, e.g. spatial meet and temporal meet, could be defined to allow the
use of more precise and constrained types upon which further semantic checks
could be done. Such precise modelling may be found in the CYC and Ontolingua
top-level ontologies (for instance, 2D and 3D spatial relations are distinguished).
However, we cannot expect the average user to spend his time looking for the
most specific terms in such libraries. Nonetheless, these libraries could be ex-
ploited by authoring tools to automatically find more specific relations that do
not violate the signatures of the general relation used.

Though relations such as part or subset are partial order relations like subtype,
for the sake of precision, they should not be directly connected to concept types.
For instance, [Airplane, part: Wing] might be intended to represent the fact
that “any airplane has for part a wing”, but many alternative interpretations
are possible: “any wing is part of a plane”, “a wing is part of any plane”, etc.

5 Conclusion

Information can be represented in many ways. For knowledge representations
to be automatically comparable, conventions must be followed by authoring
agents. We have proposed general lexical, structural and semantic conventions,
then examined some knowledge representations cases that are common in natu-
ral language sentences but rarely taken into account by current general-purpose
knowledge representation languages. We have introduced two notations (Frame-
CG and Formalized English) that support and guide the use of these conventions
(e.g. the syntax, the quantifiers and restrictors - “a”, “the”, “several”, etc. - lead
to the use of nouns as identifiers), cover the listed knowledge representations
cases and remain intuitive. We argued that an inference engine can exploit ex-
pressive languages efficiently (at the expense of precision) by ignoring some of
the more complex features. Finally, we detailed some top-level concept types
and their relationships to guide and provide semantic constraints for knowledge
representation.

As highlighted above, the precise models that are found in CYC and Ontolin-
gua top-level ontologies are certainly useful but will doubtfully be used directly
by human agents to represent information or quickly index documents, sentences
or images. Instead, we expect people (e.g. Web users) to utilize a small set of
relation types and simply use common words for concepts types: given the signa-
tures of the relation types, a lexical database such as WordNet may be exploited
by an authoring tool to derive the relevant concept types or ask the user for
more precision [3] [7]. Users will also probably use scalable multi-user knowledge
servers to refer, fix and complement lexical databases.

Acknowledgments

This work is supported by a research grant from the Australian Defense, Science
and Technology Organisation. We also thank the reviewer who pointed out that
the Knowledge Machine project [8] has similar principles to ours (frame-like
notation with English articles, type partitions, etc.) and proposes a situation-
based inference engine.

References

1. Berners-Lee, T.: The Semantic Toolbox: Building Semantics on top
of XML-RDF. http://www.w3.org/DesignIssues/Toolbox.html (W3C
Note, 24 May 1999); see also the “Semantic Web Road map” at
http://www.w3.org/DesignIssues/Semantic.html, and the “Web Architecture:
Describing and Exchanging Data” at http://www.w3.org/1999/04/WebData

2. Chein, M., Mugnier, M.L.: Positive Nested Conceptual Graphs. In: ICCS’97, 5th
International Conference on Conceptual Structures, Springer Verlag, LNAI 1257
(1997) 95–109

3. Guarino, N., Masolo, C., Vetere, G.: Ontoseek: Content-based Access to the Web.
In: IEEE Intelligent Systems, Vol. 14, No. 3 (1999) 70–80

4. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and Frame-
Based Languages. In: Journal of the ACM, vol 42, 1995.

5. Martin, Ph.: Using the WordNet Concept Catalog and a Relation Hierarchy
for Knowledge Acquisition. In: Peirce’95, 4th Peirce workshop, California (1995)
http://www.inria.fr/acacia/Publications/1995/peirce95phm.ps.Z

6. Martin, Ph.: Exploitation de graphes conceptuels et de documents structurés et
hypertextes pour l’acquisition de connaissances et la recherche d’informations, PhD
Thesis, University of Nice - Sophia Antipolis, France (1996)

7. Martin, Ph., Eklund, P.: Embedding Knowledge in Web Documents: CGs ver-
sus XML-based Metadata Languages. In: ICCS’99, 7th International Conference
on Conceptual Structures, Springer Verlag, LNAI 1640 (1999) 230–246. URL
http://meganesia.int.gu.edu.au/˜phmartin/WebKB/doc/papers/iccs99/iccs99.ps

8. Clark, P., Porter, B.: KM: The Knowledge Machine.
http://www.cs.utexas.edu/users/mfkb/km.html

9. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA (1984)
See also: http://www.bestweb.net/˜sowa/ontology/index.htm

