S34PH412 : Systèmes Microprogrammés

Architecture des Ordinateurs Cours 2

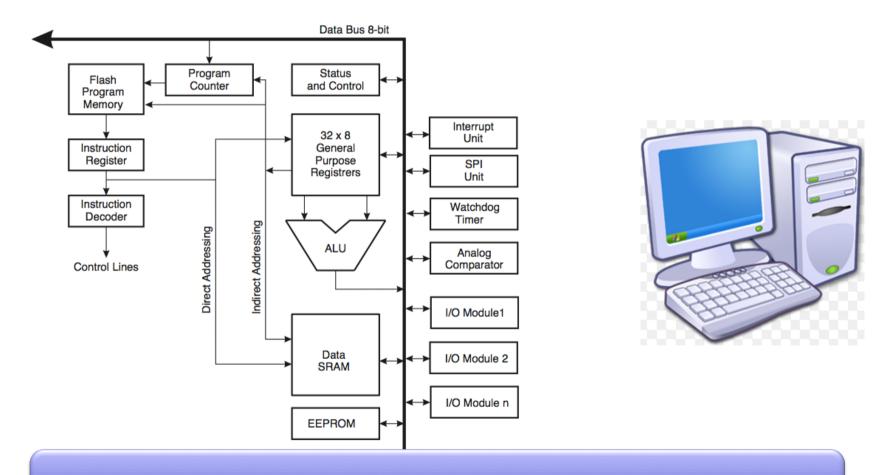
Université de la Réunion Année 2015/2016 Alicalapa F.

Concepts du cours précédent :

- Dualité Ordinateur/uP en terme d'architecture
- Système embarqué
- Mode de communication série/parallèle : avantages et inconvénients
- Les 3 exigences des systèmes embarqués actuels
- Les avantages du numérique
- Complémentarité analogique/numérique (CAN/CNA)
- La robustesse du signal numérique
- La brique technologique de base / binaire / machine à calculer
- Octet et ses dérivées (Mo, Go, To)
- Binaire, octal, hexadécimal
- Nombres à virgule en binaire
- Nombres signés en binaire

 Dualité uC/ordinateur et uP/uC : video « video_What is a Microcontroller_ » Youtube

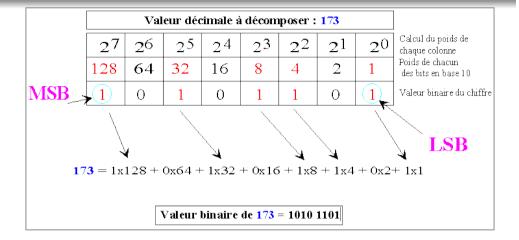
 Dualité uC/ordinateur et uP/uC : video « video_What is a Microcontroller_ »



Qu'est ce qu'un périphérique pour un uC?

Introduction : La numération binaire

Binaire naturel



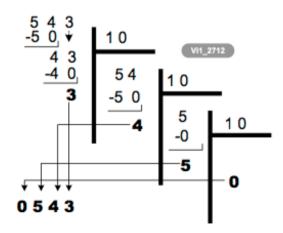
- Exercice 1 : traduire (10)₁₀ en base 2 ?
- Exercice 2 : Donner la valeur décimale du nombre 10101, dans le cas où il est codé en base 2
- Exercice 3: Réaliser la somme en base 2 des nombres décimaux suivants: 25 et 14: (25)₁₀=(11001)₂ et (14)₁₀=(1110)₂

Fiche TD1 ... fiche sur MOODLE

VII. Systèmes de numération

Pour revoir la base 2 et l'algorithme de conversion associé :

- Ecrire 173₁₀ en binaire (en présentant votre conversion sous forme de divisions successives par 2 « méthode des divisions successives » - voir l'exemple proposé en base 10 ci-dessous).
- 2. Puis passer du binaire à l'octal et à l'hexadécimal.
- 3. Rappeler brièvement le principe de passage de la base binaire à octal et à hexadécimal.



Numération binaire

Exercice 4 du cours :

- Pour revoir la base 2 et l'algorithme de conversion associé :
- 1. Écrire 173₁₀ en binaire (en présentant votre conversion sous forme de divisions successives par 2 « méthode des divisions successives »).
- 2. Puis passer du binaire à l'octal et à l'hexadécimal.
- 3. Rappeler brièvement le principe de passage de la base binaire à octal et à hexadécimal.

Exercice 5 du cours

- Donner la valeur décimale du nombre 10101, dans le cas où il est codé en base 2, 8 et 16.
- Exercice 6 du cours : certains de ces nombres sont équivalents : lesquels ? 14792₁₀, 1432₂, 39C8₁₆, 34710₈,

- Exercice 7 du cours :
 - Réaliser la soustraction :

- Notion de numération binaire (le monde du numérique et de l'analogique)
 - a. Vocabulaire de base du numérique : bit, byte, Ko, octet
 - b. Domaines numérique et analogique
 - c. Numération : utilité ?
 - d. Le codage binaire, Binaire naturel
 - e. D'autres bases existent octal et hexadécimal
 - f. Binaire réfléchi, code de Gray
 - g. Autres codes
 - h. Représentation des nombres signés en binaire

- i. nombres flottants ou à virgule en base 2
- II. Rapide Historique de l'évolution des ordinateurs
- III. Le modèle Von Neuman et représentation hiérarchique
- IV. Les différents composants du système et leurs caractéristiques

- Représentation des nombres flottants ou à virgule en base 2
 - <u>1ère méthode</u> : par conversion de base
 - Inspiration = Cas décimal :

$$\begin{array}{c|ccccc}
0 \cdot & 3 & 1 & 2 & 5 \\
poids & 10^{-2} & 10^{-3} & 10^{-5}
\end{array}$$

- 0.3125*10=3.125 ⇒ 1^{er} digit décimal après la virgule = 3 (remontée des digits)
- (enlève le « 3 ») 0.125*10=1.25 ⇒ 2ème digit décimal après la virgule = 1 etc......

- Représentation des nombres flottants ou à virgule en base 2
 - <u>1ère méthode</u> : par conversion de base
 - Multiplication successive par 2
 - Exemple :

```
(0.3125)_{10}= binaire ? (0.3125)_{10}= 0.625 (premier digit (0.3125)_{10}= (0.3125)_{10}= (0.0...) – enlève le (0.3125)_{10}= (0.01...) – enlève le (0.3125)_{10}= (0.01...) – enlève le (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3125)_{10}= (0.3
```

 $(0.3125)_{10}$ = $(0.0101)_2$ à retenir pour après.

- Représentation des nombres flottants ou à virgule en base 2
 - 1ère méthode : par conversion de base
 - Quand s' arrête-t-on ?

```
0,347 . 2 = 0,694 < 1 je pose 0 : 0,347 = 0,0...
0,694 . 2 = 1,388 > 1 je pose 1 : 0,347 = 0,01...
0,388 . 2 = 0,766 < 1 je pose 0 : 0,347 = 0,010...
0,766 . 2 = 1,552 > 1 je pose 1 : 0,347 = 0,0101...
0,552 . 2 = 1,104 > 1 je pose 1 : 0,347 = 0,01011...
0,104 . 2 = 0,208 < 1 je pose 0 : 0,347 = 0,010110...
0,208 . 2 = 0,416 < 1 je pose 0 : 0,347 = 0,0101100...
0,416 . 2 = 0,832 < 1 je pose 0 : 0,347 = 0,01011000...
0,832 . 2 = 1,664 > 1 je pose 1 : 0,347 = 0,010110001...
0,664 . 2 = 1,328 > 1 je pose 1 : 0,347 = 0,0101100011...
```

 S' arrêter quand il y a équivalence de représentation entre bases (voir exercice TD : 2^N=10^Y)

- Représentation des nombres flottants ou à virgule en base 2
 - <u>2^{ème} méthode</u> : représentation en virgule fixe (qqfois rencontrée)
 - chaque nombre est séparé en deux parties
 - Position virgule est fixe

Ex : sur 16 bits en 15 , 3125₁₀ , 0101 0000₂

 Remarque 1 : pour des « petites » partie entière ou décimale, beaucoup de digits qui sont à « 0 » ne sont pas utilisés

Représentation nombres à virgule

- Représentation des nombres flottants ou à virgule en base 2
 - <u>2ème méthode</u> : représentation en virgule fixe
 - Remarque 2 : adapté pour l'addition mais pas pour la multiplication
 - Ex sur 2 digits après la virgule :

								1	1•	0	1_2
		1	1•	0	1,	*			1•	1	12
+		-		1	2	1	1	1	1	0	1
0	0	1	1•	1	1			1		1	•
			OK			1	1	0	1	•	•
			OK			10	1	•1	0	1	1

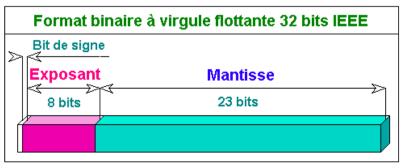
 Pour multiplication : 2 visions : erreur arrondi (si suppression 2 derniers digits) ou déplacement de la virgule « supposée fixe » si garde 4 digits!

- 3ème méthode : Représentation en virgule flottante
 - Depuis 1960, la représentation en virgule flottante, plus souple, s' est imposée, IEEE 754
 - plus économique en taille mémoire occupée,
 - permet de coder plus grande plage de valeurs
 - les nombres s'écrivent comme en notation scientifique :

$$N = M*B^E$$

M: mantisse, E: exposant, B: base

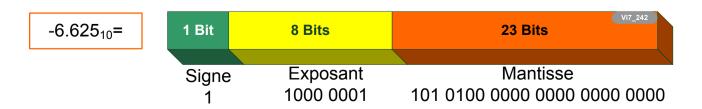
- Exemple : π(base 10)
 0,31415926 * 10¹
- Il existe flottant simple précision et double précision (voir différence après) :



- 3ème méthode : Représentation en virgule flottante
 - Un flottant est stocké en mémoire de la manière suivante (norme IEEE 754) :

(SM Eb M)₂ soit sur 32 (simple précision) ou 64 bits (double précision)

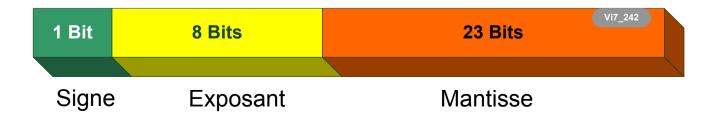
- SM : signe de la mantisse : 1 bit
- Eb : exposant biaisé (cf suite) : sur 8 bits en simple précision et
 11 en double précision
- M: mantisse: sur 23 bits en simple précision et 52 en double précision.
- Comment coder en virgule flottante ?



- 3^{ème} méthode : Représentation en virgule flottante (suite)
 - Définition en <u>BINAIRE</u> de la mantisse normalisée
 - toujours de la forme 1.1.... Une mantisse est dite normalisée si son chiffre le plus à gauche (de poids fort) est un 1 (en codage binaire).
 - Exemple : 1.101 est normalisée
 Contre-exemple : 0.001 n' est pas normalisée
 - Rem : en décimal, la notion d'écriture normalisé n' a pas de sens= 0,3141 (virgule à gauche du 1^{er} digit non nul)...ne pas écrire 3,141 (ce premier digit peut être 5,7,9...)
 - Avantage : permet d'omettre le 1^{er} bit puisqu'il est tout le temps à « 1 » ; permet ainsi d'augmenter la précision (pas possible décimal)

- 3^{ème} méthode : Représentation en virgule flottante (suite)
- Exemple pour représenter un nombre réel $(-6.625)_{10} = ()_2$ en convention virgule flottante simple précision
 - 1. Traduire la valeur absolue du nombre en binaire ⇒ 110,1010₂
 - 2. Créer la mantisse (il faut normaliser) : 1,101010 x 2²
 - 3. Omettre le premier « 1 » et étendre à 23 bits en <u>simple précision</u> : « , 101010 0000 0000 0000 0000 0 »

$$247\ 000 = 247000 = 2.47 \times 10^{5}$$
$$54321$$



- (suite)
 - 4. Calculer l'exposant (ici on à 2^2), d'où exposant = 2+décalage (biais associé notation 8 bits) = $(2+127)_{10}$ = $(129)_{10}$

$$(signe) imes \mathbf{2}^{exposant-d\'ecalage} imes \mathbf{1}$$
, mantisse

$$dcute{e}$$
 calage $=$ $2^{n-1}-1$ n^{-1} = le nombre de bits attribués à l'exposant

5. Traduire exposant en binaire (1000 0001)₂ sur 8 bits



6. Digit de signe

- 3ème méthode : Représentation en virgule flottante
 - Depuis 1960, la représentation en virgule flottante, plus souple, s' est imposée
 - plus économique en taille mémoire occupée,
 - permet de coder plus grande plage de valeurs
 - les nombres s'écrivent comme en notation scientifique :

$$N = M*B^E$$

M: mantisse, E: exposant, B: base

- Exemple : π(base 10)
 0,31415926 * 10¹
- Il existe flottant simple précision et double précision (voir différence après) :

Interpretation of Exponent in the IEEE Single Format

BIASED EXPONENT	SIGN OF NUMBER	TRUE EXPONENT	SIGNIFICAN	D CLASS
0000 0000	+	-	00 00 00 00 11 11 to 00 01	positive zero negative zero denormals
0000 0001 to 0111 1111 1000 0000 to 1111 1110	-	-126 to 0 1 to 127	00 00 to 11 11 00 00 to 11 11	normals
1111 1111	+ - -	-	00 00 00 00 10 00 00 01 to 11 11	+ infinity - infinity indefinite not-a-number

Microcontroller Programming The Microchip PIC®, Julio Sanchez, Maria P. Canton, CRC Press

- Opérations sur les nombres à virgule flottante
 - Pour l'addition et la soustraction, il faut que les exposants aient la même valeur, additionne mantisse (décimal).
 - Exemple d'addition : 0.3*10⁴+0.998*10⁶ = ???
 - 1. Dénormaliser : $0.3*10^4 = 0.003*10^6$.
 - 2. Additionner les mantisses : 0.003+0.998 = 1.001
 - 3. Normaliser : $1.001*10^6 = 0.1001*10^7$.
 - Pour multiplication (ou division) :
 - addition (resp soustraction) des exposants
 - et multiplication (resp division) des mantisses (voir TDs)

Pour la multiplication (resp. la division), on additionne (resp. soustrait) les exposants et on multiplie (resp. divise) les mantisses.

Exemple: $(0.2 \times 10^{-3}) \times (0.3 \times 10^{7})$

- 1. Addition des exposants : -3 + 7 = 4.
- 2. Multiplication des mantisses : $0.2 \times 0.3 = 0.06$.
- Normalisation du résultat : 0.06 × 10⁴ = 0.6 × 10³.