Specifying Knowledge Representation
Notations and Knowledge Exports in Them

Philippe A. Martin', Jérémy Bénard?®, and Anil Cassam Chenai?

' EA2525 LIM, ESIROI L.T., University of La Réunion, F-97490 Sainte Clotilde, France
+ adjunct researcher of the School of I.C.T. at Griffith University, Australia
Philippe.Martin @univ-reunion.fr
2 GTH, Logicells, 55 rue Labourdonnais, 97400 Saint-Denis, France
{Jeremy.Benard, acc}@logicells.com

Abstract. This article focuses on the knowledge exporting related parts of an
ontology-based approach that we designed to reduce the difficulties of
automatically importing and exporting knowledge in knowledge representation
languages (KRLs). KRLO, the ontology we designed to support this approach,
is the first ontology allowing the representation of KRL models and notations in
a simple and uniform way. It already represents KRLs of the main different
families. It also specifies knowledge export functions or rules, and enables
generic parsing. It can be converted in any KRL that has at least OWL2-RL
expressiveness and hence be exploited by any inference engine handling it.
Thus, our results can be exploited or replicated. This approach requires no or
few programming tasks and allows end-users to adapt KRLs. KRLO and
translation server based on it are accessible from http://www.webkb.org/KRLs/.

Keywords: Knowledge representation languages (KRLs), Knowledge sharing,
KRL syntactic/structural/semantic translation.

1 Introduction

Knowledge representation languages (KRLs) permit to represent information in a logic-
based way that can be exploited by inference engines. This eases precision-oriented
information sharing, retrieval and problem solving. Many KRLs exist. They have
different (abstract) models which follow different logics, e.g., the SHOIN(D)
description logic or First-Order Logic. Each model has or may have different notations
(aka concrete models or syntaxes), e.g., Notation3 or XML-based notations. In this
article, ferm refers to a KRL element, structure refers to a term having other terms as
parts, concrete term refers to a notation element — e.g., a string containing a function in
a pre-fixed/in-fixed/post-fixed form — and abstract term refers to a model element, e.g.,
a quantifier, a relation, a function or a frame (class or object with its properties).

A unique KRL model (e.g., RDF+OWL) and notation (e.g., SPARQL Update+Query)
is not adequate for every kind of knowledge modelling or exploitation, nor for every

person or tool. Indeed, representing and sharing complex information, e.g., the content
of some natural language sentences, requires a KRL that follows a very expressive logic
and has a rich and concise (textual or graphic) notation. Simpler KRLs are easier to
learn by people. Developing inference engines or KBMSs — Knowledge Bases (KB)
Management Systems — based on simple KRLs is also easier, although extending these
tools can then be very difficult. Nowadays, the W3C no longer advocates the use of
RDF/XML as the sole notation to use for Linked Data and there are many KRL
notations to take into account for knowledge reuse, e.g., KIF-like ones, N3-like ones
and XML-based ones. Many KRL standards exist — e.g., CLIF and CGIF of the
Common Logics (CL) standard — and many existing KBs (Knowledge Bases) or KB
servers — e.g., those of Ontolingua and CYC — are interesting to reuse and are not
written in W3C related KRLs. Thus, knowledge translation is useful.

The heterogeneity of existing KRL models and notations — or, more precisely, the
absence of shared primitives for representing their structures and semantics make their
exploitation dependant to structures specific to these KRLs. This explains the difficulty
of automatically comparing knowledge from different sources and therefore performing
knowledge translation, retrieval, sharing, integration, etc. In a previous article [1], we
showed that this difficulty can be reduced by an ontology that i) represents some KRL
models and notations in a simple and uniform way, and ii) can be extended by Web
users to represent other KRLs in such a way. Thus, we also introduced some underlying
ideas of KRLO, an ontology we created for supporting that goal. However, [1] is focused
on the content of KRLO for abstract models. This part is summarized in Section 2. This
present article, which is thus self-contained, focuses on representations for notations and
how they can be used for knowledge export or translation.

E.g., with KRLO, the designers of a KBMS (KB Management System) that can
handle OWL2-RL expressiveness do not have to spend weeks or months to program
knowledge parsing, export or translation for each notation or model to handle: they can
let their KBMS issue queries exploiting parsing or export functions of KRLO. If a target
notation is not already represented in KRLO, they only have to copy and adapt the
representation of an existing similar notation. For simple changes, e.g., modifying some
term delimiters such as replacing "(" by "{" for the arguments of functions, or adding
pre-fixed/in-fixed/post-fixed forms to structured terms, this may be done in a few
minutes. These designers can then also let their KBMS end-users perform such simple
changes and hence let them use notations suited to their preferences, applications or the
tools they reuse. More generally, exploiting ontologies — here, a notation ontology —
instead of less declarative or organized structures or codes has advantages: flexibility,
ease of modification, automatic semantic checking, etc. Many articles have shown this
for decades, e.g., since the Ontolingua based research on knowledge translation [2, 3].
Thus, given the space constraints, we do not further expand on those advantages in this
article aimed at Semantic Web knowledgeable readers. However, despite those
advantages, no ontology for a notation — and then a fortiori no ontology of KRL
notations — seemed to exist before KRLO. Hence, it fills a void. This article introduces
the elements of such an ontology and how they can be exploited. Section 3 explains the
used conventions and gives introductory examples. Section 4 lists the underlying

ideas for concrete term specification via KRLO and illustrates them. Section 5
expands on this for knowledge export. Section 6 compares our work with other ones.

2 Summary of the Representation of Abstract Terms in KRLO

Three standardizing organizations have given a language ontology for the models of the
KRLs they advocate. The W3C published XML models for RDF+OWL, RIF-FLD
[4], ..., as well as translation rules between some pairs of them, e.g., in [5]. The ANSI
gave a UML model and an XML model for Common Logics (CL) [6]. The OMG
(Object Management Group) also did so for the Ontology Definition Meta-model
(ODM). Since UML and XML are not logic-based KRLs, these ontologies only declare
some terms, they do not define them. ODM 1.1 [7] declares the elements of four KRL
models (RDF, OWL, CL and Topic Maps). It has few semantic relations — such as
generalization or equivalence relations — between terms of different models. These terms
are still difficult to compare: the model ontologies remain globally heterogeneous. They
are also internally heterogeneous in the sense that the definitions of their elements are
not based on a few primitive semantic relations. Thus, for each model, different types of
elements must be handled differently and a large number of relation types must be taken
into account (instead of only a few combinable primitives, for obtaining the same
functionality). This makes reusing these models difficult, even for designing export
rules. Setting additional relations between elements of such KRL model ontologies will
not solve their global or internal heterogeneity. To solve this problem, KRLO not only
represents generalization and equivalence relations between the abstract terms (ATs) of
different KRL models (this partially defines their semantics) but also represent their
structures in a uniform way (this also partially defines their semantics). Indeed, the
structure of each AT is represented like the structure of a function, i.e., as an operator
with an optional set of arguments and a result. Thus, in KRLO, the four most important
primitive relation types for relating ATs, i.e., terms of abstract models) are named
r_operator, r_argument, r_result and r_part. The first two are subtypes of the last since
the operator and arguments of an AT are also its parts. E.g., in KRLO, a variable or an
identifier is defined as having for (r_)operator a name, no argument and for result an
AT of a certain type. A relation is defined as having for operator a relation type, some
arguments and for result a boolean. A value (e.g., a number) is defined as having no
argument and having itself as operator and result. A genuine function is defined as having
for operator a function type, some arguments and a result. A quantification is defined
as having for operator a quantifier, some arguments and for result a boolean. Thus, in
KRLO, an operator may be a function/relation/collection type, a quantifier or a value.
Besides its top-level, KRLO is composed of the specifications of KRLs — or families
of KRLs — defined with this top-level. Any inference engine that exploits KRLO can
perform some knowledge translation or export: no procedural code is needed for them.
Thus, KRL specifications can be i) adapted at any time by the end-users, ii) compared
and organized via ontologies, and iii) executed by different inference engines. This
offers more possibilities or flexibility to a tool designer and its end-users than

procedural programming based approaches. For the knowledge structural translation or
export permitted by the generalization relations and function-like structural definitions
of KRLO, OWL2-RL expressiveness is sufficient for defining the structures, including
those for higher-order logic terms or equivalence relations such as those between a
frame and a logical conjunction of binary relations from a same source node. For more
complete translations, an inference engine will require — and be able to handle — more
complete definitions of the semantics of each exploited AT type. Such definitions can
be imported from ontologies that are complementary to KRLO, e.g., for some OWL2
like constructs, the Frame-Ontology of Ontolingua [3]. KRLO also does not include
definitions for types which are not logic-related, e.g., types for scalar quantities and
physical quantities or dimensions, or types for some process related concepts or
relations, or types related to a particular domain. Thus, if a KRL notation has some
syntactic sugar for such types, to enable other translations than structural ones, its
specification has to reuse types that are not defined in KRLO but in other ontologies.
The top-level of KRLO does not have direct equivalence or generalization relations
between all AT structures that are equivalent but between one expressive form and the
other forms. Transitively, translations can be found between all equivalent forms. Thus,
for example, to compare representations that use different KRLs, our KRLO exploiting
KBMSs convert each AT that uses OWL-like cardinality restrictions or non-binary
relations into an AT that only uses numerical quantifiers and binary relations, then
compare it to other ATs and, when necessary for export or other inferencing purposes,
translate back ATs to other forms. When the target KRL is not formally expressive
enough to represent an AT — e.g., when a statement such as "in 2015, at least 78% of
birds in UK could fly, according to ..." has to be translated into RDF+OWL — ad-hoc
forms must be used. If the specification of the target KRL describes such forms, our
inference engines use them. Otherwise, the source forms are kept and comments or
annotations are used to distinguish them from genuine translations in the target KRL.

3 Terminology, Conventions and Introductory Examples

The terminology used in KRLO — and hence in this article — has been chosen to be
understandable by the communities interested in information translation, e.g., those
related to Model Driven Engineering (MDE), knowledge/ontology sharing/engineering
or the Semantic Web. The RDF+OWL related terminology was not suited for KRLs of
a higher expressiveness. It is also not used in RIF-FLD [4], the Higher-Order Logic
based model recommended by the W3C. For readability and normalisation purposes,
KRLO also follows many conventions or best practices. In the next examples, when
UML is not expressive enough, FL. (Frame Language) [8] is used since i) it is similar to
the well-known Turtle or N3 notations but more concise and expressive, and ii) it was
used for writing KRLO. This does not mean that we advocate its use for all purposes.
We call link an instance of a binary relation type. Such a type is instance of the
2nd-order type "owl:ObjectProperty” or "owl:DatatypeProperty"”. As illustrated by

these last two identifiers, in the text of this article, as in many W3C notations, ":" is

used as separator between the namespace identifier shortcut (here "owl") and the
identifier with the namespace. However, in FL. and hence in some examples within
tables or figures below, the separator is "#" because ":" is used for separating a link
and its destination node, as in many frame-based notations. A frame is a statement
composed of several links connected to a same source node. A link source/destination
node is called a concept node and either is a named individual (named term that is not
a type) or refers to one or several individuals (e.g., by using a type and a quantifier; in
RDF, the quantifier is implicitly the existential quantifier and an unnamed resource
node is called a blank node). Named terms that are not individuals nor relation types
are called concept types (aka classes in RDF). In the examples of this article, the
default namespace is for the types introduced by KRLO.

For readability purposes, in KRLO and this article, each name for a concept type or
individual is a nominal expression beginning by an uppercase letter, as in "Model" and
"KRL_Model". To help readers distinguish relation types from concept types in any
notation, even when they are used in concept nodes, the name of a relation type
introduced by KRLO begins by "r_" (in the general case) or "rc_" if this is a type of link
having a concrete term (CT) as destination — the only exception is the relation type named
"rc" which connects an AT to one of its possible CTs. Thus, in the illustrations of this
article, all the names not following these conventions and not prefixed by a namespace
are KRL keywords. Within nominal expressions, "_" and "-" are used for separating
words. When both are used, "-" connects words that are more closely associated. Since
nominal expressions are used for the introduced types, the convention for reading links
in graph-based KRLs [9] can be used, i.e., links of the form "X R: Y" can be read "X
has for R Y". However, when a keyword such a "of" is used for reversing the direction
of a link, the form "X R of: Y" should rather be read "X is the R of Y". The syntactic
sugar of Formalized English (FE) [10] makes this reading convention explicit.

Table 1 illustrates translations of an English sentence into different KRLs. Different
notation families are illustrated, e.g., prefixed notations, frame based infix ones and
graphic notations. This example shows the diversity of KRL models and notations, and
hence gives a feeling for the difficulty of translating between KRLs. The sentence is a
simple definition and use cardinalities restrictions. For the notations not having
syntactic sugar for cardinalities restrictions, the OWL2 model is used, except in KIF
since this KRL allows to define the numeric quantifier "exactlyN". OWL-Lite would
have been sufficient but the qualified cardinality restrictions of OWL2 make the
representations more readable. The English sentence is about birds: we reused and
adapted a classic example in Artificial Intelligence. It is represented in different KRLs,
roughly from the representation most similar to English, to the least similar. Link type
names are in italics. The names of some of these KRLs are composed of the model(s)
they use, followed by the notation they use. E.g., the RIF+OWLIRIF-PS KRL follows
the RIF-FLD model plus the OWL ontology (in order to represent cardinalities
restrictions) and uses the RIF-PS (RIF Presentation style) notation. We use "I" rather
than "/" as separator since "/" is needed for referring to notations, e.g., RIF-
FLD+OWL/RIF-PS refers to the notation RIF-PS for RIF-FLD(+OWL). Indeed, such a
use of "/" has been popularized by the W3C with the RDF/XML notation. This last
convention is used in Fig. 1 for illustrating some relations between models and

Table 1. Translations of an English statements in 9 different KRLs.

English: By definition, a "flying_bird_with_2_wings" is a bird
that flies and has two wings.

FE: any Flying bird_with_2_wings has for r_type Bird,
is r_agent of aFlight, has for r_part 2 Wing.

FL: any Flying_bird_with_2_wings r_type: Bird, //Version with the structure
r_type: Bird, r_agent of : a Flight, r_part:2 Wing; // usedin FE.
Flying_bird_with_2_wings r_supertype: //Version with normalized structure,
{ Bird ~(Thing r_agent of: aFlight) // i.e., one close to the structures
A(Thing r_part: 2 Wing) // followed in UML below and those
} _[. -> complete .]; // followed when OWL is used below.

CGLF: type Flying_bird_with_2_wings (¥x)
[[Bird:*x]-{ ->(r_agent)->[Flight] ; ->(r_part)->[Wing:{*}@2]; }]

KIF: (defrelation Flying bird_with_2_wings (?x) =
(exists ((?f Flight)) (and (Bird ?x) (r_agent f ?x)
(exactlyN 2 "'w Wing Nr_part ,7x 7w)))))

OWL Manchester: Class: :Flying_bird_with_2_wings
EquivalentTo: Bird and r_agent some Flight and r_part exactly 2 Wing

OWL Functional-style: EquivalentClasses (Flying_bird_with_2_wings
ObjectIntersectionOf (Bird ObjectSomeValuesFrom (:r_agent :Flight)
ObjectExactCardinality (2 :7_part :Wing)))

RIF+OWL/RIF-PS: Forall ?x r_logic_implication (
Mx#Flying_bird_with_2_wings
And(Exists ?f (And(?#Flight ?x#Bird r_agent(f 7b))
Exists 7t (And(7f#7t ?t#owl:Restriction owl:onProperty (2t r_part)
owl:qualifiedCardinality (7t 2) owl:onClass (?t Wing)))))

RDF+OWL/N3: Flying_bird_with_2_wings owl:intersectionOf
(Bird [rdf:type owl:Restriction; owl:onProperty r_agent; owl:someValuesFrom Flight |
[rdf:type owl:Restriction; owl:onProperty r_part; owl:qualifiedCardinality 2;
owl:onClass Wing]).

Slightly adapted UML: Legend: the arrow —= represents a super-

))) 1% r_agent) type (subClassOf) link while the other kind

Bird Flying_thing - Flight of arrow (— with an associated link type in

| | . . . r_part 2 . italics and a destination cardinality if different

\ = T

\ / Thing_with 2_wings Wing from 0..*, alias 0-N) is used for the other
Vo inks. ili

/ <<intersectionOfs> links. For readability purposes, the Ab(ﬁ)xes

around classes (types) and associations

\ ,// /

Flying bird_with_2_wings (links) are not drawn.

notations. Apart from KIF, "OWL Fct.-style" (OWL Functional Style) and RIF-PS, all
notations in Table 1 are graph-based: they directly show the concept nodes — and
relation nodes relating them — of a graph-based model. Apart from UML, the graph-
based notations below are, at least sometimes, frame-based: the order of their concept
nodes may be important for understanding them. E.g., CGLF [9] is frame-based for type
definitions (as shown by Fig. 2) but not for other statements, e.g., for a definition body.
A notation that is not graph-based is positional or name-based: the concept nodes
appear as positional or named arguments of a relation node which looks like a function
call in traditional programming languages. No example of named argument is given in
Table 1: the respective positions of the arguments are therefore important.

Fig. 1 shows some subtype and r_part relations between some KRL notations. In
KRLO, this is also done for KRL models. This permits to organize and compare
notations or models, families of them, and hence also to modularize KRL specifications.
Fig. 1 illustrates one subtype partition, i.e., one complete and disjoint set of subtypes for
a type. It also gives one example of r_part link: the one between (any instance of any
version of) Notation3 (N3) and Turtle.

KRL_notation

A
| | |
Graph—based_notatio/l\1 Positional_or_name-based_notation
| \
Frame-based_notation XML-based_notation LISP-like_notation
A A A A A

| \ | | |
Turtle « "?Y" N3 RIF-FLD/XML KIF notation CLIF

Legend: same as in Table 1 for the Slightly adapted UML plus, still for readability reasons,
i) since each subclass set is here a subclass partition, its "{disjoint, complete}" annotation is
left implicit, and ii) the associations are in italics and their cardinalities are not displayed
since they are all 0-N in both directions. Thus, the above r_part association can be read: "any
(version of) N3 has for part 0 to many (versions of) Turtle, and conversely".

Fig. 1. Slightly adapted UML representation of some relations between KRL notations.

4 Concrete Term Representation in KRLO: Ideas and Examples

In all the KRLs we know, when each AT is defined as an operator with arguments, we
noted that the ways to (re)present this AT — or, more precisely, the syntactic structures
of the concrete terms (CTs) for this AT — could be specified in a generic way in a LL(1)
or LALR(1) grammar, hence a deterministic context-free grammar that can be
efficiently parsed. This was an important discovery because this meant that i) we could
build one efficient generic parser for all these KRLs, and ii) the primitives of the
notation ontology of KRLO could be the representations of these structures. As an

example for this idea, consider an AT composed of an operator "o" with two arguments
"x" and "y". If parenthesis are mandatory delimiters and if spaces are the only usable
separators, this AT has only the next five possible CTs (not counting optional uses of
spaces and parenthesis) in all the notations we know: "o (x y)" (function-like prefix
construct as in RIF-PS), "(o x y)" (list-like prefix construct as in KIF), "(x o y)" (infix
construct as in Turtle and some RIF-PS statements), "(x y o0)" (list-like postfix
construct), "(x y) o" (function-like postfix construct). Five rules of an LL(1) or
LALR(1) grammar can be used for specifying these five possibilities and they can also
be generalized for any number of arguments, not just two. Furthermore, if — as with the
Lex&Yacc parser generators — the grammar can be divided into a lexical grammar and a
non-lexical grammar, the separators can be made generic in the non-lexical part via
terminal symbols such as Placeholder_for_begin-mark_of_the_arguments_of_a_prefix-
function-like_term and Placeholder_for_end-mark_of_the_arguments_of_a_postfix-
list-like_term. In the lexical part, it is also possible to specify rules for detecting various
kinds of tokens and various kinds of separators rather than specific ones. Thus, using
Flex&Bison (GNU variants of Lex&Yacc), we created a generic parser for KRLs that
can have an LALR(1) grammar (which does not have to be found since it is generalized
by the generic LALR(1) grammar that our parser uses). This grammar restriction did not
prevent us to let FL have all the potentially useful prefix/infix/postfix constructs we
could think of. It simply led us to associate explicit and unambiguous syntactic sugar to
signal the beginning and end of each of these constructs, e.g., "_()" to enclose classically
prefixed function call parameters, "(_.)" to enclose LISP-Like prefixed function call
parameters, "(_)" to enclose postfixed function call parameters and ".()" or ".[]" to
enclose genuine lists. Such marks also make these constructs unambiguous for people too.

The top-level of the ontology of notations of KRLO does not categorize all possible
construct types: it simply contains the primitive relations permitting to describe them.
Indeed, we found that there were two many possible combinations of these primitives
for a categorization to be helpful. Since the primitives also proved too cumbersome to
be used directly, we defined intermediary functions accepting list-based descriptions.
Such functions — e.g., fc_OP and fc_ARG - will be illustrated in Fig. 2.

Given some CTs and the notation in which they are written, our parser exploits the
specification of the CTs of this notation — and the specification of the ATs to which
they are connected — to build data structures storing ATs that our inference engines
exploit (since our implementation of this parsing is currently rather ad-hoc and not the
focus of this article, it will not be further detailed in this article). Conversely, we
wrote functions which exploit AT and CT specifications to generate CTs in a given
KRL (model and notation) for ATs. The next section will provide more details. The
functions translating ATs between different abstract models are not the focus of this
article. All functions of KRLO are declarative and can be automatically converted
into rules or (non-binary) relation type definitions for inference engines that do not
handle functions but only rules or type expansion/contraction.

Fig. 2 gives examples of five specifications for RIF-PS CTs. Each one uses a link of
type "rc" which, for the instances of a certain type of AT, defines the (default) types of
CTs that can be used for presenting these instances in the RIF-PS notation.

Abstract_term@RIF ?at

AAAA \’C—l"*.fc_type _(.[fc_OP_from_(?at) ("

fc_ARGS_from_(?at) ")"], {RIF_PS})

RIF_AT_that_has_also_and_preferably_an_infix_presentation_in_RIF_PS ?i

*
A /‘\ AA \rc—l"rfc_type _(.[fc_ARG_(?i.r_link_source)

‘ Rule @RIF fc_OP_from(?2i)
Typing@RIF | Equality @RIF fc_ARG_(?i.r_link_destination)
Supertyping @RIF 1, {RIF_PS})

RIF_AT_displayed_as_a_whitespace_separated_list_of_terms_in_RIF_PS ?sl

A /‘\ M» fc_type _(.[fc_ARGS_(?sl) 1, .{RIF_PS})

‘ RIF_document_context@RIF
Quantification_variable_list @ RIF

Annotation@RIF ?a _(r_operator: 0..1 Constant,
r_argument: 0..1 Frame_or_Frames @RIF)
*
e LT e type ([fo_OP_from_(?a) fc_ARG._from_(?a)], .(RIF_PS})
Annotation_link@RIF ?al _(r_operator: r_annotation, rdf#subject: 1 Formula,

\ rdfffobject: 1 Annotation @RIF)
k
re 1. fc_type _(.["(*" fc_ARG _(?al.r _link_destination)

)" fc_OP _(?al . r_link_source)], .{RIF_PS})

RIF-PS example of annotated phrase with 2 quantifiers, 1 frame of type Flight and 1 rule:
(* if 2t is a Flying_thing, there is 1..* Flight with r_agent ?ft *)
Forall ?ft (Exists ?f ?f # Flight [r_agent -> ?ft] :- ?ft # Flying_thing)

Legend: i) same notes as in Fig. 1, ii) "1..*" means "at least 1", iii) the FL notation is here
used for variables, functions, lists and the operators "@" and "." (— Extended UML).

The FL operator "." permits to refer to the destination of a link, as with "property paths" of
SPARQL, but in a concise manner as with object-oriented languages.

Fig. 2. Extended UML specification of RIF-PS concrete terms for some RIF abstract terms.

The first rc link starts from "Abstract_term@RIF". This is not an identifier like
"rif: Abstract_term" but an FL expression referring to the subtype of KRLO:Abstract_term
for RIF, i.e., the type that generalizes all ATs in the RIF model. The definition of the
"@" FL operator is not given here because of space constraints (this would require
explaining its FL syntax) and because it is only an abbreviation for a certain
combination of subtype and r_member relations from a type to a set of types. However,

the interested reader can find its definition in the specification of FL in KRLO. This
abbreviation can be defined in any KRL having the expressiveness of OWL2-RL.

Before paraphrasing the first rc link in English, here is it global purpose. It specifies
that any instance of Abstract_term @RIF has (at least, by default) RIF-PS CTs which are
composed of the following sequence of elements, separated by at least one spacing
character: 1) the (concrete) representation (in RIF-PS) of the operator of the AT, 2) an
opening parenthesis, 3) the representation of its arguments separated by at least one
spacing character, 4) a closing parenthesis. A paraphrasing of this first rc link in English
is: if "?at" is an instance of the RIF type for Abstract_term (in FL, classic variable
names begin by "?") then "?at" has for rc (concrete representation) at least one CT of the
type returned by the function fc_type with the specified arguments.

The first argument of this fc_type function is a square bracket delimited list of four
terms (here, CT specifications). The first and third terms of this list are results of the
functions fc_OP_from and fc_ARGS_from, defined in KRLO. They are similar to
fc_type but they i) respectively work on the operator and arguments of their AT
parameter, and ii) permit to know the role of each term in the specified list: operator,
argument or separator. Thus, for parsing purpose, the grammar rule to use for this list of
terms can be selected. The function fc_ ARGS_from may have a second argument for
specifying a non-space separator to use between the arguments.

The second argument of the above cited fc_type function is a set of notation types.
Indeed, fc_type returns a type of CTs that are member of notations of such types. A set
is used because an AT may have identical types of CTs in different notations.

Abstract_term@RIF has many subtypes that do not follow this first (above
explained) presentation rule or not just this one. For each subtype, another overriding or
complementary specification is then associated. This is why the second rc link of Fig. 2
specifies an infix presentation for some links. Fig. 2 shows that four types of links have
this default infix presentation in RIF-PS: those expressing rules, supertypes, types or
equality. If RIF-PS did not also allow the prefix presentation to be used for these four
types of links, Fig. 2 would have had to specify that. In KRLs reusing OWL, this would
have been translated using the owl:allValuesFrom type. The third rc link specifies the
RIF-PS representation of some parts of ATs such as quantification variables and
context-related parts of the Document@RIF AT. The last two rc links specify the RIF-
PS representation of an Annotation link, i.e., the RIF-PS CT for the Annotation within
special begin and end marks, followed by the CT for the annotated AT. Fig. 2 shows
that in RIF an Annotation is composed of an optional Constant and optional Frames.

5 Export Functions and Example

In KRLO, each AT has one and only one (inherited or overriding) rc link for a given
type of notation. Indeed, our knowledge server prevents the entering of ambiguities
when it detects them. Thus, for a given AT and notation, the multiple possible
presentations — i.e, the corresponding CTs — are declaratively and unambiguously
described. This description is recursive when a CT specification refers to a component
AT (via the parameter of functions such as fc_OP or fc_ ARGS) since this AT has itself

a CT specification. The spacing between CTs is similarly defined in a declarative and
unambiguous way, if only via the default presentation specifications of KRLO. Thus,
although KRLO uses functions for generating presentations, they can be automatically
converted into rules or type definitions for inference engines that do not handle
functions. The export functions of KRLO simply perform the recursive exploration of
the specifications and the concatenation of the resulting CTs. The export process is

Abstract_term

}
\ \ \
Non-token_phrase Value Referring_term
S
Quantification Connective_phrase Frame_as_non-token-phrase Identifier Variable
A /‘\ equivalent_type |
! Conjunction_of_links_from_a_same_source Frame a- Flight-with-agent-a-Bird

equivalent_statement‘ r_operator| r_argument

Quantified-conjunction a-Flight-f-with-agent-a-Bird b Concept-node a-Flight
|

r_operator ‘\ r_argument Half-link with-agent a bird

Exists Conjunction _a-Flight-f-with-agent-a-Bird-b r_operator

r_operator, r_argumenzi r_argument ‘ r_argument

r_argument

And Link f-with-agent-b —®Variable f Variable b

‘\ . \ .
r_operator | Flight < r_result r_ resulti ’Blrd

r_agent " Flight 8 Bird 3~

\ rc

rc /* the destination of this link is mainly created by applying the first rule of Fig. 2:

*
Abstract_term@RIF ?at e L Je_type _(.[fc_OP_from_(?at) ("
fe_ARGS_from_(?at) ")"
], (RIF_PS}) */

\/
/*in RIF-PS*/ " Exists ?f (And(?f#Flight ?x#Bird r_agent(f 7b)))" v

/*in FL*/ " [a Bird r_agent: a Flight] "

\
/% in N-Triples */ " Flight8 r_agent Bird3. Flight8 fype Flight. Bird3 fype Bird."

Legend: i) same as in Fig. 2, ii) - --»: instance link, iii) /* ... */: comment,

iv) the identifiers of individuals are in courier font; here, they are all generated by concatenating
a name for a type of the individual, "__", anumber or a FE-like expression for what the
individual describes.

Fig. 3. Extended UML specification of relations between some abstract terms and some
concrete terms for the representation of "A bird flies" (in FL: [a Bird r_agent: a Flight]).

semantic preserving (and correct if the links are correct). It is complete (if what is
expressed by the links is complete) since there is one and only one rc link (inherited or
overriding) rc link for a given type of notation.

Fig. 3 shows relations between some (types or individuals for) ATs and CTs
involved in the representation or export of "A bird flies" in RIF-PS, FL and N-Triples.
This statement is represented both via a frame and a conjunction of links from a same
source node (with existentially quantified nodes), two semantically equivalent forms.

6 Comparison To Other Works

KRLO and the LALR(1) parser based on it can be categorized as a system that helps
design tools handling many different models and notations. Other ones are: classic
parser generators (such as Lex&Yacc), interactive programming environment
generators (e.g., Centaur [11]), structure+presentation model based tools (e.g.,
XML+XSLT+CSS based tools and MOF/UML based tools) and KRL model based
tools. The specificity of our system is to be fully ontology based. This makes it the most
1) code-independent in the sense that different inference engines can run KRLO, and
ii) extensible by its designers and end-users (both can specify or adapt any model or
notation they wish to use). In this article aimed at Semantic Web knowledgeable
readers, and given the space constraints, we do not attempt to show — via formal proofs
or empirical measures — how the previous sentence derives from the one preceding it.
We refer the interested reader to books or proceedings related to "Semantic Web
Enabled Software Engineering", e.g., [12]. However, like other systems, KRLO does
not permit a tool to better exploit more expressive constructs than those it is already
designed to. E.g., KRLO can permit tools to use models and notations representing
transitivity in various ways but it does not permit tools to better exploit this notion than
they already can. The following paragraphs examine the notation related systems from
the above cited category, starting from those providing the least flexibility to the end-
users.

Classic parser generators are given a concrete grammar (hence, a concrete model)
with actions associated to its rules to build an abstract model. Additional functions and
rules have to be created for translation or export purposes. All of them are sensitive to
changes in the syntax or semantics of the languages used for inputs or outputs. They
cannot be organized into an ontology, for comparison or reuse purposes. To sum up,
creating and updating these functions or rules are — or are akin to — programming tasks,
hence long and error-prone. Yet, this is how import/export features are implemented in
the current KBMSs and KRL translators we know of.

These programming tasks are facilitated and generalized via the use of an interactive
programming environment generator. E.g., Centaur [11] could generate a structured
editor, a parser, a type checker and an interpreter or a compiler for a specified language.
To that end, its concrete grammar, its abstract grammar and the translating rules
between them had to be specified in the Metal language (they were then converted into
Lex&Yacc). Centaur has been used mainly for programming languages but also for one

KRL [13]. However, the above cited languages are execution oriented rather than
modelling oriented. They do not ease the creation and reuse of ontologies. The
specifications are then still difficult to organize and reuse. Small changes in the concrete
and abstract grammars often lead to important changes in the specifications. Creating
them is still a bit akin to programming even though no low-level management of objects
has to be done. Finally, translations rules have to be specified for each pair of
languages. On the other hand, KRLO is still far from having declarative specifications
for all the features that a tool such as Centaur provides via its procedural code.

Another approach is the use of notations that make the structure of a language model
explicit and hence easy to parse and check via rather generic tools. This is for example
the case with XML, MOF-HUTN (the Human Usable Textual Notation for the Meta-
Object Facility), XMI (an XML notation for MOF models) and other structure
description languages of the Model Driven Engineering (MDE) approach. However,
concrete descriptions are then often not concise enough or high-level enough to be used
directly by people for knowledge display/entering or by tools for knowledge handling.
E.g., which KBMS or inference engine uses XML objects internally? Translations
from/to other models or notations are still necessary. This approach does not eliminate the
need to create parsers and export functions or rules for various notations. Some standard
languages are provided for creating these export functions or rules, e.g., XSLT and CSS.
However, they cannot perform logical inferences and are not ontology-based. Like this
approach, ours permits to use one generic parser but the set of possible input languages
is less restricted (XML is just one of many possible notations) and all KRLs having the
expressiveness of OWL2-RL could be used for the model and notation specification.

For semantic translations between KRLs or KRL models, researchers soon found that
pairwise translations was not a scalable approach and hence that translating to an
expressive standard KRL or KRL model was necessary. This led to the creation of KIF
(Knowledge Interchange Format) [14] in 1992 and then to the Ontolingua [2,3] library
of ontologies. However, since KIF was the de-facto interlingua, Ontolingua does not
represent various KRL models nor then relations between KRL ATs. Conversely,
KRLO does not yet include the content of Ontolingua. Thus, both are complementary.

Unlike ODEDialect [15], KRLO is not a language permitting to express transformations
between KRLs and it does not distinguish lexical, syntactic, semantic and pragmatic
translations. It is an ontology of KRLs and hence a library of KRL ontologies
represented via the same primitives. Using them and adding a new KRL specification to
KRLO (e.g., via its Web servers) is sufficient for also specifying its translation to other
represented KRLSs, no transformation rules is required. No specific language is necessary:
KRLO can be represented in any KRL that has at least OWL2-RL expressiveness.
Finally, a link in KRLO (e.g., an equivalence link between two types of terms) can be
used in translations that can be seen as lexical, syntactic, semantic or pragmatic.

Besides our own, we have not found works on notation ontologies — nor then on a
generic parser based on them — even for a standard KRL model such as RDF. Therefore,
it appears there are also no other model+notation ontology based translator. There are
translators between RDF-based notations, e.g., RDF-translator and RDF2RDF. They
necessarily involved a lot of programming. Their Web interfaces propose no way to
parameter them. On the other hand, there have been several works on style-sheet based

transformation languages or, more generally, rules to specify how RDF ATs may be
presented, e.g., in a certain order, in bold, in a pop-up window, etc.: Xenon [16], Fresnel
[17], OWL-PL [18] and SPARQL Template [19]. These tools were not initially meant
to use a notation ontology: they initially required the use of a new template or style-
sheet for each target notation. However, some of these tools — e.g., SPARQL Template —
could exploit KRLO since it can be represented in RDF+OWL2-RL.

7 Conclusion

KRLO is an ontology of KRLs, the first one representing the structure and semantics of
the abstract models of different KRLs, thus aligning or organizing them and their
abstract terms (ATs). It is also the first one to include a notation ontology and thus
represent notations in addition to models and related to them. This article summarized
the AT related ideas and primitives of KRLO and then presented the ideas and
primitives related to concrete terms (CTs) as well as their links to ATs. Thereby, it
illustrated the interest of the operator+arguments structural model: it enables the
representation of ATs and CTs using a small set of primitives. This permitted us to
create a generic parser for KRLs. The constraint is that the notations are represented
using the primitives of KRLO and hence that they can have an LALR(1) grammar
(which does not have to be found since it is generalized by the generic LALR(1)
grammar that our parser uses). Conversely, this also permitted us to represent export
functions or rules that can generate a unique CT given an AT and a target notation.

Combining this generic parsing and these export functions permits to perform
knowledge structural translation, i.e., the translations that can be made given the
semantic links between terms in KRLO: generalization or equivalence links, structural
links (e.g., r_part and r_result) and presentation links (e.g., rc). This includes translations
between ATs following different models, e.g., OWL versus CL. These translations are
semantic preserving and complete w.r.t. what is expressed by the links. If needed,
complementary ontologies (e.g., domain ontologies), hence additional relations, can be
used to support translations for other information. Specifying a KRL into KRLO is
sufficient to enable translations of this KRL to other ones, no transformation rules needs to
be specified. No procedural code is required. Amongst systems helping to handle many
languages, being fully based on a KRL ontology, ours is the most code-independent
(different inference engines can run it) and extensible by its designers and end-users.

Our approach provides an ontology-based concise alternative to the use of XML as a
meta-language for creating KRLs that follow KRL ontologies. It therefore also
complements GRDDL and can be seen as a new research avenue (GRDDL permits to
specify where a software agent can find tools — e.g., XSLT ones — to convert a given
KRL to RDF/XML). This avenue is important given the frequent need for applications
to i) integrate or import and export from/to an ever growing number of models and
notations (XML-based or not), and ii) let the users parameter these notations.

Our translation server (accessible from http://www.webkb.org/KRLs/) and its
inference engine have recently been implemented by the second and third authors of

this article, of the software company Logicells. This company will use this work in
some of its applications to enable them to i) collect and aggregate knowledge from
knowledge bases, and ii) enable end-users to adapt the input and output formats they
wish to use or see. The goal behind these two points is to make these applications —
and the ones they relate — more (re-)usable, flexible, robust and inter-operable.

We intend to further work on KRLO by integrating more abstract models and
notations for KRLs as well as query languages and programming languages. We also
intend to complete our notation ontology by a presentation ontology with concepts from
style-sheets and, more generally, user interfaces.

Acknowledgments. We are grateful to Dr. Olivier Corby (INRIA & I3S, Sophia
Antipolis) for our fruitful discussions on this work. E.g., they helped us clarify the
presentation of the underlying ideas of this work.

8 References

1. Bénard J., Martin Ph.: Improving General Knowledge Sharing via an Ontology of
Knowledge Representation Language Ontologies. In: CCIS 553, pp. 364-387 (Chapter 23).
Springer, Heidelberg (2015)

2. Gruber, T. R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5, 2, 199-220 (1993)

3. Farquhar, A., Fikes, R., Rice, J.: The Ontolingua Server: a tool for collaborative ontology
construction. International Journal of Human-Computer Studies, 46, 6, Academic Press,
Inc., MN, USA. (1997)

4. Boley, H., Kifer, M.: RIF Framework for Logic Dialects (2nd edition). W3C
Recommendation. Boley, H., Kifer, M. (eds.), http://www.w3.0org/TR/2013 /REC-rif -
£1d-20130205/ (2013)

5. de Bruijn, J., Welty, C.: RIF, RDF and OWL Compatibility (Second Edition). W3C
Recommendation, http://www.w3.0rg/TR/2013/REC-rif-rdf-owl-20130205 (2013)

6. Information technology — Common Logic (CL): a framework for a family of logic-based
languages. ISO/IEC 24707:2007(E), JTC1/SC32 (2007)

7. ODM: Ontology Definition Metamodel, Version 1.1. OMG document formal/2014-09-02,
http://www.omg.org/spec/0ODM/1.1/PDF/ (2014)

8. Martin, Ph.: Towards a collaboratively-built knowledge base of&for scalable knowledge
sharing and retrieval. HDR thesis (240 pages), University of La Réunion, France (2009)

9. Sowa, J.F.: Conceptual Graphs Summary. In: Conceptual Structures: Current Research and
Practice, Ellis Horwood, pp. 3-51 (1992)

10. Martin, Ph.: Knowledge representation in CGLF, CGIF, KIF, Frame-CG and Formalized-
English. In: ICCS 2002, LNAI 2393, pp. 77-91. Springer, Heidelberg (2002)

11. Borras, P., Clément, D., Despeyrouz, Th., Incerpi, J., Kahn, G., Lang, B., Pascual, V.:
CENTAUR: the system. In: SIGSOFT'88, 3rd Annual Symposium on Software
Development Environments (SDE3), Boston, USA, pp. 148-24 (1988)

12. Pan J.Z., Zhao Y. (eds.): Semantic Web Enabled Software Engineering. IOS Press (2014)
13. Corby, O., Dieng, R.: Cokace: a Centaur-based environment for CommonKADS
Conceptual Modeling Language. In: ECAI'96, Budapest, Hungary, pp. 418-422 (1996)

14. Genesereth, M., Fikes R.: Knowledge Interchange Format, Version 3.0, Reference Manual.
Technical Report, Logic-92-1, Stanford Uni., http://www.cs.umbc.edu/kse/ (1992)

15.

16.

17.

18.

Corcho, O.: A Layered Declarative Approach To Ontology Translation With Knowledge
Preservation. PhD Thesis (311 pages), Universidad Politécnica de Madrid (2004)

Quan, D.: Xenon: An RDF Stylesheet Ontology. In: WWW 2005, 14th World Wide Web
Conference (Japan) (2005)

Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A Browser-Independent Presentation
Vocabulary for RDF. In: ISWC 2006, LNCS 4273 . Springer, Heidelberg (2006)

Brophy, M., Heflin, J.: OWL-PL: A Presentation Language for Displaying Semantic Data
on the Web. Technical report, Lehigh University (2009)

. Corby, O., Faron-Zucker, C.: STTL: A SPARQL-based Transformation Language for RDF.

In: WEBIST 2015, 11th International Conference on Web Information Systems and
Technologies, Lisbon, Portugal (2015)

