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Abstract:  Many  decision-making  tasks,  including  the  sustainability-oriented  ones  and  those 
related  to  the  management  of  risks  or  emergencies,  must  gather,  integrate,  and  analyze  an 
important amount of information of various kinds and origins. Hence, how should information be 
best  organized  and  shared  by  agents  –  people  or  software  –  for  all  and  only the pieces  of 
information looked for by these agents to maximize their retrieval, reuse, organization and analysis 
by these agents? To that end,  various logic-based knowledge representation (KR) and sharing (KS) 
techniques, and hence KR bases, have been used. However, most KS researchers focus on what this 
article defines as “restricted KR and KS”, where information providers and consumers can or have 
to discuss for solving information ambiguities and other problems. The first part of this article 
highlights the usefulness of “general KR and KS” and, for supporting them, provides a panorama of 
complementary techniques, and hence, indirectly, best practices or kinds of tools to use for general 
KS purposes. These techniques collectively answer research questions about how to support Web 
users  in  the  collaborative  building  of  KR  bases.  The  second  part  uses  the  risk/emergency 
management domain to  illustrate the ways different types of information can be represented to 
support general KS.
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1. Introduction
Many  tasks  first  require  retrieving,  comparing,  aggregating  and  organizing an 

important amount of information of many different kinds in order to make good and 
timely decisions. This is the case of sustainability-oriented decisions, if only because they 
have to balance economical, societal and environmental issues. This is also the case of 
many tasks for the management of risks or emergencies. E.g., both Search&Rescue and 
preemptively  reducing  disaster  risks  require  access  and  use  of  many  kinds  of 
information or other resources, such as particular kinds of persons, detection devices, 
communication  tools,  maps,  search  methods  and  search  software.  These  tasks  also 
depend on many  parameters  such  as  the  nature  of  the  emergency,  the  weather,  the 
terrain and the availability of the needed resources.

Ideally, to support such tasks and hence the  findability,  gathering,  interoperability, 
reusability, integration and analysis of information potentially useful to those tasks or to 
the design of tools for those tasks, that information should be published, related and 
organized on the Web in places and in ways that allow people and software agents to (i)  
retrieve and compare information with respect to non-predefined sets of criteria, and (ii)  
complement information while keeping them as organized and hence as retrievable. 

As explained below, one requirement for such an ideal and scalable organization – 
and  thus  a  primary  very  general  best  practice for  information  dissemination  and 
collaboration between people, organizations or software – is to represent and organize 
information either directly within knowledge representation bases (KR bases) or in ways that 
can be automatically imported into KR bases (e.g. in documents and databases that have 
been designed to allow such an importation).  These KR bases can be either privately 
developed or, preferably, collaboratively developed. 
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In this article, these KR bases are simply called KBs and, before going further, need 
to be more introduced now. Such KBs do not store texts or other data; they store KRs (or 
simply, “knowledge”),  i.e.  logic-based  representations  of  semantic relations  between 
pieces of information – semantic relations being relations that can be represented in a logic-
based way. The boxes and figures in Section 2.1 and Section 3 include many examples. In 
this article, the notions referred to by the words “knowledge” (KRs) and “data” are mutually 
exclusive. “Data” refers to information not explicitly organized – or poorly organized – by 
semantic relations, e.g. as in databases or XML documents: they are mainly organized by 
predefined  structural relations  (i.e.  partOf  ones)  and  few  semantic  relations  of  very  few 
predefined types (mostly typeOf relations and sometimes subtype relations). In KBs, unlike 
in  relational  databases,  all  the  types  (i.e.  relation  types  and  concept  types)  and  their 
definitions  are  user-provided  (not  predefined  by  the  database  designer);  most  of  the 
knowledge in many KBs are expressed via such definitions; large KBs such as CYC [1,2], 
Freebase [3] and DBpedia [4] have hundreds of thousands of subtype relations. Document-
based technologies and database systems generally only handle  data, although deductive 
databases  may be  seen as  steps towards KBs.  A KB is  composed of an ontology and, 
generally, a base of facts. An ontology is (i) a formal terminology, i.e. a set of terms (alias, 
object  identifiers)  used  in  the  representations  stored  in  the  KB,  along  with  (ii) 
representations  of  term  definitions,  and  thereby  direct  or  indirect  semantic  relations 
between  these  terms.  Databases  and  natural-language-based  documents  cannot 
automatically be converted into KBs that are well-organized via generalization and implication 
relations,  if  only  because  these  documents  and  bases  most  often  lack  the  necessary 
information to derive such relations (these relations are rarely made explicit by document 
authors and even human readers often cannot infer  such relations with certainty). These 
relations – and thus, manually or semi-automatically built  KBs –  are necessary for the 
support of (i) semantic-based searches, via queries or navigation, and (ii) any scalable way of 
integrating or organizing information. This explains why architectures or methodologies 
for  building ontologies  or  systems exploiting them have already often been discussed 
regarding  disaster  risk  reduction  or  management.  For  example,  in  February  2022,  the 
digital library of the ISCRAM conferences (“Information Systems for Crisis Response and 
Management” conferences) included 64 articles with main fields mentioning ontologies, 
and 46 of these articles recorded “ontology” as a keyword.

Several small  top-level ontologies related to disaster risk reduction or management, 
e.g.  the  agent-oriented  ontology  of  [5]  for  better  indexing  and  retrieving  “disaster 
management  plans”  in  document  repositories  for  such  plans,  SEMA4A  [6]  which 
supports alerting people about imminent disasters, empathi [7] which is more general and 
integrates  some other  ontologies,  and POLARISCO [8]  which is  a  suite  of  ontologies 
formalizing and relating the terminologies and methods of various emergency response 
organizations  (e.g.  fire  departments,  police,  and healthcare  services).  However,  as  of 
2022, it seems there are no public large content ontology related to disaster risk reduction 
or management, let alone KBs where people or organizations could relate or aggregate 
information.  As  an  example,  even  though  [9]  (which  is  also  about  disaster  related 
terminologies)  mentions  past  “massive  efforts  e.g.  in  European  projects  such  as 
DISASTER  (cordis.europa.eu/project/id/285069  (accessed  on  7  August  2022)), 
SecInCoRe (cni.etit.tu-dortmund.de/research/projects/secincore (accessed on 7 August 
2022)),  EPI  (www.episecc.eu  (accessed  on  7  August  2022)),  or  CRISP 
(cordis.europa.eu/project/id/607941/reporting/fr  (accessed  on  7  August  2022))”,  the 
results of those projects were not KBs but reports about then planned works as well as 
advocated  architectures  or  small  models  (top-level  ontologies).  There  currently  exist 
some  large  projects,  such  as  the  Norwegian  INSITU  (Sharing  Incident  and  Threat 
Information  for  Common  Situational  Understanding)  project  (2019–2022)  [10],  which 
focus  on  harmonizing  terminologies  or  on  tools  for  the  collaborative  synthesis of 
information in classic media (databases, textual documents, maps, ...), not via KBs. The 
use of  classic  media  make the harmonization of  terminologies  useful  for  supporting 
lexical  searches  (i.e.  those  proposed  by  current  Web  search  engines  and  document 
editors;  these  are  not  semantic  search  tools).  However,  such  an  harmonization  is  a 
complex  task  which  requires  committees  (hence  an  hierarchy-based  decision-making 
organization) and it is useful only when its guidelines are followed (something that is 
not easy to do). Via KBs, harmonizing terminologies is not necessary since relations of 
equivalence or generalization between terms within KBs or across KBs can be added in a 
decentralized and incremental way by each provider of terms or knowledge. Tools that 
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exploit these particular relations can allow users and knowledge providers to choose the 
terms they wish, without this decreasing knowledge retrievability.

This article distinguishes two meanings for “knowledge sharing” (KS). The one here 
called “restricted KS” is closer to  data(base) sharing: it is about (i) easing the exchange of 
structured  information  (KRs  or  structured  data)  between  particular agents  (persons, 
businesses or applications) that can discuss with each other to solve ambiguities or other 
problems,  and  (ii)  the  complete  or  efficient exploitation  of  the  information  by  these 
particular  agents,  for  particular  applications.  The other  meaning,  here called “general 
KS”, is about people relating or representing information within or between KBs in ways 
that maximize the retrievability and exploitation of the information by any person and 
application.  Examples of early landmark works related to general KS were Ontolingua 
(server, ontologies and vision) [11] and the still on-going above-cited CYC project. These 
two meanings are unfortunately very rarely distinguished, even indirectly, e.g. by the 
World Wide Web Consortium (W3C). With respect to KS, the W3C has a “Semantic Web 
vision” [12] of a “Web of Linked data” [13]. As the use of the word “data” may suggest, 
and as explained in Section 2, the techniques and vision proposed for these Linked Data 
are mainly focused on restricted KS. Indeed, the W3C had to focus on the basics and 
convince  industries of  the  interests  of  KBs  over  databases.  However,  after  1997  –  the 
beginning of the popularization of the W3C visions and languages – KS was mainly 
learned about and operationalized via the W3C documents  and languages,  and thus 
almost all research works in KS were implicitly in restricted KS. Among research articles 
related to risk or emergency management and that advocate using KBs, most rely on the 
W3C techniques or approach –  e.g. the articles of [14] (about ontology-supported rule-
based reasoning), of [15] (about ontology-supported access to particular databases) and 
of [16] (about a small ontology mainly including 38 concept types and 21 subtype relations,  
about  some  crisis  management  procedures).  Previous  studies  into  risk/emergency 
management have not addressed general  KS in these domains and  are insufficient to 
address the distributed and large number of potentially useful sources of information for 
such a management. This insufficiency is also one reason for the above-cited lack of large 
publicly accessible content ontologies or KBs related to disaster management. 

When  applied  to  programming  –  or,  more  generally,  knowledge  modeling  and 
exploiting processes or techniques as well as rules or constraints (or data structures for them) – 
restricted KS means representing them (i) in a KB directly usable by a KR-based software for 
a particular application, or (ii) in a KB from which a particular program can be manually 
or semi-automatically generated (this is model-based design/programming). With general 
KS, these  process-related  resources  are  represented  and  organized  into  an  ontology 
where general logical specifications are incrementally (and cooperatively) specialized by 
more and more precise or restricted specifications, according to selected paradigms (e.g. 
logical, purely functional and state-based) and their associated primitives from particular 
logics and languages. Since these primitives can be defined or declared in an ontology, this 
one can store and organize representations that are directly translatable in particular 
formal languages such as programming languages.  Thus, if  software components are 
stored in the lower levels of such an ontology, this one may also be used as a scalable  
library  of  software  components  in  various  languages.  Via  the  systematic  use  of 
specialization relations and the explicit  representation of any implementation choices, 
general KS allows the representation of specifications that are language dependent or 
application  dependent  while  still  maximizing  knowledge  reuse  and  thus  allowing 
knowledge users (not just knowledge providers) to make such choices.

Knowledge representation and sharing (KR&S) – or, a fortiori, general KS – and the 
exploitation  of  its  results  has  various  advantages  for  risk/emergency  management. 
Before  an  emergency  occurs,  i.e.  in  the  anticipation  phase,  KR&S  helps  finding, 
organizing  and  analyzing  resources  (e.g.  information  for/on  risk/emergency 
management techniques),  designing tools (e.g.  KB-based or not software and disaster 
area exploration robots) and testing them (e.g. via simulations). During an emergency, 
KR&S helps finding and coordinating resources (e.g. information and people). After an 
emergency,  KR&S  helps  in  organizing  and  analyzing  data  collected  during  the 
emergency (e.g. data collected by the robots) and exploits it for validating or refining 
hypothesis, techniques, simulation data and tools, thus for generating new knowledge. 
All these “KR&S helps or supports for risk/emergency management” derive from the 
knowledge integration and inferences they permit, compared to data-based technologies. 
Thus, in that respect, the helps and supports provided by KR&S technologies (such as 
those of data-based technologies) are not dependent on the context, e.g., earthquakes, 
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fires, floods, volcanic eruptions, etc. What changes depending on the context or domain 
is  the  knowledge  that  is  represented,  searched,  retrieved  and  exploited,  as  well  as 
particular features required for that, such as particular kinds of KR construct, logic or 
expressiveness, e.g. for spatial, temporal or probabilistic KR. The provided KR&S helps 
are better with general KS – hence with the techniques provided in this article – than 
with restricted KS since general KS (i) supports a better integration of knowledge by 
more people, hence more knowledge sources, and (ii) supports each knowledge provider, 
consumer or application in selecting, extending or creating the above-cited particular 
features they require. Finally, regarding the context independence of the panorama of 
techniques provided in this article, it should also be noted that these techniques were 
developed  by  the  first  author  due  to  some  clear  insufficiencies  of  existing  KR&S 
technologies for general KS, in any domain. The next paragraph lists these insufficiencies.

Representing rules or filling data acquiring forms for a particular application – or 
building a tool to support this – is different to representing knowledge for general KS 
purposes – or building a tool to support this, e.g. for allowing experts or companies in a 
particular domain to represent (in a shared KB) the products, services or knowledge they 
can  provide,  or  for  allowing  researchers,  lecturers  and  engineers  to  represent  and 
integrate their knowledge in this shared KB for pedagogical or cooperation purposes. 
When  representing  knowledge  for  general  KS  purpose,  some  technological  gaps  in 
existing  KR&S  technologies  often  become  apparent.  First,  starting  from  the  most 
immediately  apparent:  reusing  an  existing large  shared  lexical  ontology  is  necessary 
since otherwise every knowledge contributor would have (i) to define each term (word 
sense) and its generalizations, and (ii)  relate each of them to each other term of each 
other  contributor;  in  other  words,  they  would  each  have  to  spend months  or  years 
creating and relating their own large shared lexical  ontologies.  Second, extending the 
used KR language appears useful because it is almost never expressive or concise enough 
to  allow entering all  the  particular  required knowledge for  the  particular  domain to 
represent.  Third, for representing such an amount of complex knowledge, textual KR 
languages are much easier to use than graphical interfaces, in the same way that,  for 
medium-to-large  programs,  textual  programming  languages  are  easier  to  use  than 
graphical ones. Fourth, the used KR languages allows many ways to represent equivalent 
knowledge  but  the  associated  inference  engines  are  not  able  to  find  the  results 
equivalent.  Fifth,  separately-built  KBs  –  hence  poorly  related  KBs  that  are  often 
inconsistent and implicitly redundant with each other – are not exploitable for general 
KS: they do not contain enough information for an inference engine to integrate them 
reliably (analogously, a person cannot integrate texts written in a language he does not 
understand). Thus, general KS requires shared KBs with a KB editing protocols that (i) 
ensures that enough information is provided to reach and maintain a particular minimal 
organization in each shared KB, and (ii) does not restrict the knowledge the users want  
to enter in a KB as long as it is within the scope of this KB. Sixth, in addition to this 
inner-KB KS protocol, there is a need for inter-KB KS protocols since no single individual 
shared KB can host and efficiently manage all knowledge in all domains, or have a KB 
editing  protocol  that  satisfy  all  knowledge  contributors.  Although  identifying  these 
problems  is  not  too  difficult  when  representing  knowledge  for  general  KS  purpose, 
research avenues for solving them were original and ambitious: the work of developing 
and implementing all the underlying techniques, tools and general ontologies is difficult 
and very long. Section 2 introduces complementary techniques for supporting general 
KS – and hence the ideal described in the second paragraph of this introduction – via 
four subsections,  one for  each of the following four complementary topics  of  such a 
support: KR language instruments, KR content instruments (reusable ontologies; this is 
the  topics  on  which  most  general  KS  related  research  focus),  inner-KB  content 
organization,  inter-KB  content  organization.  While  doing  so,  Section  2  also  gives  (i) 
various rationale  for  the  above-cited insufficiencies  of  classic  techniques,  and (ii)  the 
constraints  (or  most  important  features  to  support)  that  explain  why  the  provided 
solutions are proposed as answers to these insufficiencies. The originality of Section 2 is 
in the panorama or synthesis itself, rather than in the depth of the description of the 
introduced or cited techniques, since the first author has previously published on several 
of  these  techniques  but  separately,  not  together.  However,  in  Section  2  some  new 
elements are also introduced. Furthermore, the panorama shows that it is only together 
that these complementary techniques support general KS by collectively answering the 
following research question: how to allow Web users to collaboratively build KBs where 
pieces of information (i) are not implicitly “partially redundant or inconsistent”, neither 
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internally nor with each other,  (ii)  are  complete w.r.t.  particular  criteria  and subjects 
selected by the KB creators, (iii) do not restrict the knowledge that people can provide 
nor force them to agree on beliefs or terminology, (iv) do not lead knowledge providers 
to  duplicate  information  in  various  KBs,  and  (v)  do  not  require  people  to  search 
information in several KBs nor aggregate information from several KBs?

Via several examples, Section 3, the second part of this article, shows how various 
kinds  of  information  useful  for  risk/emergency  management  can  be  represented  or 
categorized for the purpose of general KS. Section 3.1 illustrates how organizing and 
representing a small terminology, and why performing such tasks is important. Section 
3.2 provides a general model for organizing and representing Search&Rescue information; 
the logic-based representation of procedures and other description objects is illustrated 
and  is  original  for  such  tasks.  Section  3.3  shows KRs  for  an  automatic  systematic 
exploration  of  a  disaster  area,  e.g.  by  a  rover  (in  this  article,  “rover”  refers  to  an 
autonomous small  vehicle  such as  those  used for  planetary surface exploration);  the 
illustrated  originality  in  Section  3.3  is  the  representation  of  procedures.  Section  3.4 
represents information about ways to design rovers that are adapted to a terrain; the 
illustrated  originality  is  in  showing  how  all  the  important  information  from  three 
different  research articles  are synthesized,  related and organized.  The contents  of  all 
these KRs (models, procedures, techniques, …) and their use for designing the intended 
rovers are themselves validated by the designed prototype rover and its capabilities [17].

2. Four Complementary Avenues for Supporting General Knowledge Sharing
2.1. Tools to Import/Export Any Kind of Knowledge, Even in User Specified Formal Languages

Knowledge  representations  (KRs)  are  logic  statements.  From  a  graph-oriented 
viewpoint,  KRs  are  concept  nodes  (i.e.  concept  type  instances,  quantified  or  not) 
connected or connectable by relation nodes (or,  more shortly, “relations”: existentially 
quantified  instances  of  relation  types).  KRs  are  expressed  in  formal  languages:  KR 
languages (KRLs). In this article, a KB is a set of objects that are either types (objects that 
can have instances) or non-type objects. Statements (KRs) are non-type objects. Types are 
either concept types or relation types. In this article, a “term” is an object identifier that  
does not solely come from the used  KRL, i.e. that is not solely predefined. A term is 
defined or declared in an ontology. A KB is only an ontology if it has no base of facts, hence 
if all its statements are definitions. Box 1, Box 2 and Section 3 give KR examples. Box 3 
illustrates simple semantic queries on KRs.
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Box 1.  Some equivalent formal representations of a very simple statement (in the names of the 
given KRLs, “/” separates the used “logic/abstract model(s)” part from the used “concrete syntax 
model” part, and means that the first one is linearized with the second one).

English: By definition, a flying_bird_with_2_wings is a bird that flies and has two wings.

PL (Predicate logic; here, more precisely, “First-order_logic / Modern_variant_of_the_Peano-Russel_notation”):
   Flying_bird_with_2_wings (b) := Bird(b)  ∧ ∃f Flight(f)  ∧ agent(f,b)  ∧

                                   ∃w1,w2 Wing(w1)  Wing(w2)  ∧ ∧ part(b,w1)  ∧ part(b,w2)  w1∧ !=w2

       Notes: an “agent” relation links a process to its “do-er” hence, in natural language grammars, to its “subject”;
                   in the KRs of Section 2, italics are used for relation types and only for these terms;
                   fully understanding these representations is here not required: they are only intended as examples.

First-order_logic / Prefixed-KIF  (note: KIF represents concept types as unary relation types):”):
   (defrelation Flying_bird_with_2_wings (?b) := (exists ((?f Flight) (?w1 Wing) (?w2 Wing))

                              (and (Bird ?b) (agent ?f ?b) (part ?b ?w1) (part ?b ?w2) (/= ?w1 ?w2))))

FE (Formalized-English; here, more precisely, “First-order_logic / FE_notation”):
   any Flying_bird_with_2_wings is a Bird that is agent of a Flight and has for part 2 Wing. 

FL (here, more precisely, “First-order_logic / FL_notation”):
   Flying_bird_with_2_wings  =  ^(Bird  agent of: a Flight,  part: 2 Wing).

RDF+OWL2 / Turtle  (a language advocated by the W3C and commonly used for Linked Data):
   :Flying_bird_with_2_wings  owl:intersectionOf

      (:Bird  [a owl:Restriction; owl:onProperty :agent;     owl:someValuesFrom :Flight] 

              [a owl:Restriction; owl:onProperty :wingPart;  owl:qualifiedCardinality 2]).

UML (here, more precisely, “UML_model / UML_concise_notation”):
Legend for this graphic notation:

- each arrow “->” represents a supertype (sublassOf) link 

- for other links, the arrow “→” is used with an associated 
   link type and also a destination cardinality when this 
   cardinality is different from 0..*, i.e. 0–N 

- in the used concise notation, boxes around classes (types) 
   and associations (links) are not drawn.
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Box 2.  Some equivalent formal representations of a more complex statement, one that cannot be 
represented in first-order logic (and,  a fortiori,  in RDF+OWL2; for the representation with the 
Turtle notation, the IKLmE logic and structural model is used).

English:   On March 21st 2016, John Doe believed that in 2015 and in the USA,
            at least 78% of adult healthy carinate birds were able to fly.

FE:  ` ` ` ` `at least 78% of Adult Healthy Carinate_bird is able to be agent of: a Flight´
             at place USA´ at time 2015´ for believer John_Doe´ at time 2016-03-21´.

FL:  [ [ [ [ [at least 78% of Adult Healthy Carinate_bird is able to be agent of: a Flight ]
             place: USA ] time: 2015 ] believer: John_Doe ] time: 2016-03-21 ]. 

IKLmE / Turtle:  [rdf:value 
                   [rdf:value

                      [rdf:value 

                          [rdf:value

                              [rdf:value [rdf:value [:agent_of [a :Flight] 

                                                    ];  pm:q_ctxt [quantifier  "78to100pc";

                                                                   rdf:type  :Adult, :Healthy,

                                                                             :Carinate_bird ]

                                         ];  pm:ctxt [:modality  :Physical_possibility]

                              ];  pm:ctxt  [:place  :USA]

                          ];  pm:ctxt  [:time  "2015"]

                      ];  pm:ctxt  [:believer  :John_Doe]

                   ];  pm:ctxt  [:time  2016-03-21] ].

Box 3. Some equivalent formal representations of two semantic queries on a KB.

English:  In this KB, what “minimal graph” implies that some/all birds have or may have 2 wings ?
                (notes: “minimal graph” here means that the shorter-but-still-correct answer, the better; 
                              otherwise, if there is an answer, the whole KB would also be an answer;
                              in FL an FE, the query operator “?” is used for retrieving such graphs in a KB;
                              the statement represented in Box 1 is one answer to this query)

FE:  Is there a statement ?s that has for implication `a Bird may have for part 2 Wings' ?

FL:  ?s  [?s => [a Bird part: 2 Wing] ]

SPARQL (a query language advocated by the W3C; since, SPARQL is not able to represent the above query,
                  the statement represented in Box 1 is one answer to this query):
      CONSTRUCT { ?b ?rPart ?w }  WHERE { ?b rdf:type Bird .   ?w rdf:type Wing .

                                          ?rPart rdfs:subPropertyOf* :part  .  ?b ?rPart ?w } 

English:       Which birds in this KB are described as having 2 wings ?

FE:        ? ?b  `a Bird ?b that has for part 2 Wing' 

FL:        ? ?b  [a Bird ?b  part: 2 Wing]

SPARQL:    SELECT ?b  WHERE { ?b rdf:type Bird .   ?w rdf:type Wing .
                                          ?rPart rdfs:subPropertyOf* :part .  ?b ?rPart ?w }

When it comes to KR languages (KRLs), the W3C first proposes a few ontologies for 
“KRL models”, i.e. logic and structural models, e.g. RDF for representing very simple logic 
formulas (existentially quantified conjunctive formulas), OWL2 for the use of the SROIQ 
description logic and RIF for representing rules of more expressive classic logics. The 
W3C also proposes some notations, i.e. concrete syntax models, for the previous KRL models, 
e.g.  the  notations  named  RDF/XML,  RDF/Turtle  and  RIF/XML.  Box  1  illustrates 
RDF/Turtle and the meaning of “/” in these names. There exists other standards for 
other  KR  logic  models,  e.g.  the  model  of  KIF  (the  ANSI  “Knowledge  Interchange 
Format”) and Common-Logic (CL, the ISO/IEC model for first-order logic), with various 
notations for them, e.g. Prefixed-KIF, Infix-KIF and XCL (“XML for CL”). However, as 
described by the next two paragraphs, the current standard or common KRLs have at 
least two problems for general KS, e.g. for risk/emergency management.
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The first drawback of these KRLs is their expressiveness restrictions. Although these 
restrictions  ensure  that  what  is  represented  via  these  KRLs  has  some  interesting 
properties  (e.g.  efficiency  properties),  these  restrictions  prevent the  representation  of 
some useful information: some KRs cannot be formally written. Then, these KRs cannot 
be shared, and this also often leads to the writing of KRs in ad hoc, imprecise or biased 
ways, hence in incorrect or far less exploitable ways. Conversely, for general KS, enabling 
people  to  write  expressive  KRs  has  often  no  downside  since,  when  needed  and 
whichever their expressiveness, KRs can be translated into less expressive ones. This can 
often be completed automatically, to fit the need of a particular application, by discarding 
the kind of information that  this application cannot handle or does not require. Since 
such choices are application dependent, the knowledge users should make them, not the 
knowledge  providers.  KRs  designed  for  particular  applications  are  often  unfit  (too 
biased or restricted, ...) for other applications. As mentioned in other words within the 
introduction, in general KS, knowledge providers do not make application-dependent 
choices – or only as additional specializations, hence without restricting the possibilities 
of  knowledge  users.  Since  current  or  future  risk/emergency  management  cannot  be 
reduced to a list of particular applications, it is limited by expressiveness restrictions. 

A  second  important  drawback  of  these  KRLs  is  that  they  are  not  “high-level”, 
meaning that they are not supporting or leading to “normalized and easy to read or 
write” representations of many important notions such as numerical quantifiers, meta-
statements,  and interpretations of relations from collections.  Hence,  even when similar 
pieces of information are represented, if different KRLs or different knowledge providers are 
involved,  the  results  are  generally  so  different  that  matching  them  to  each  other  is 
difficult  to  do  automatically,  and  hence  so  is  searching  or  aggregating  them.  Using 
ontology  design  patterns –  such  as  those  of  [18]  –  is  difficult  and  only  very  partially 
addresses these issues; thus, it is rarely performed. In addition, for different domains or 
applications, it is often useful to use different notions and different ways to represent 
information. Viewing – and, a fortiori, writing – KRs via current KR editors is even more 
restricting in terms of what can be displayed and expressed. E.g., graphics take a lot of 
space and thus do not allow people to simultaneously see and hence visually compare 
many KRs (this is a problematic for KR understanding and browsing). 

A first answer to these problems was (i) FL [19], a KRL that has a very expressive, 
concise and configurable textual notation, and (ii) FE [20], an English-looking version of 
FL which can more easily be read by people with only a small training in KR. Like FL, FE 
can use an ontology even for logic-related terms such as quantifiers and hence can be a 
notation for any logic, unlike the other logic-based controlled languages, e.g. “Attempto 
Controlled English” and “Common Logic Controlled English”. Box 1 and Box 2 illustrate 
the expressiveness and high-levelness of FL and FE compared to some classic KRLs. The 
English statement in Box 2 could have been represented in KIF (since it has a second-
order logic notation interpreted into a first-order logic model) but in a less readable and 
normalizing way. 

A more general and complementary answer is the design of an ontology of (i) model 
components for logics, and (ii) notation components for these models. KRLO (KRL ontology) 
[21] is a core for such an ontology: it  supports the definition of KRL languages (and 
actually most formal languages). Furthermore, it is stored in a cooperatively-built shared 
KB (details in Section 2.3), that allow Web users to extend KRLO and store the definitions 
of new KRLs. A library of software components exploiting such an ontology is currently 
being  created.  Via  these  components  or  modules,  KB  systems  will  be  able  to 
import/export  from/to/between  any  such  specified  KR  languages,  and  thus  also 
perform  particular  kinds  of  KR  translations  (in  addition,  since  the  rules  for  such 
translations are also specified in the ontology, tool users will not only be able to select the 
rules that they want to be applied but also complement these rules). [22] criticized KIF, 
and other  would-be KRL interoperability standards,  for  necessarily packaging only a 
particular set of logic primitives and hence not actually supporting interoperability if the 
primitives of any logic cannot be defined with respect to each other with that KRL. The 
use of KRLO and translation-procedures-based on it is a solution to this problem and 
can be seen as a way to have the interoperability advantage of standards without their 
expressiveness and notational restrictions. [21] also shows how common notations such 
as Turtle or JSON-LD can be used for representing meta-statements and many kinds of 
quantifiers,  albeit  in  a  yet  non-standard  way.  Box  2  illustrates  this  with  Turtle  and 
IKLmE, a model that is part of KRLO and that represents the concept and relation types 
of IKL [23], a first-order logic model that is an extension or variant of CL and KIF for 
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interoperability purposes. Some other research projects had or have some similarities 
with the KRLO project but do not share the goal of supporting one shared ontology for 
any number of KRLs. Furthermore, KRLO is cooperatively extendable by Web users, as 
detailed  in  subsequent  subsections,  for  general  KS  purposes  as  well  as  general 
translation purposes between KRLs. No other project related to KRL ontologies had the 
same goal as the KRLO project. The LATIN (Logic Atlas and Integrator) Project (2009 –
2012) [24] represented translation relations between many particular logics. Ontohub [25] 
is (i) a repository that included some KRL model representations and some translation 
relations between them, and (ii) an inference engine able to integrate ontologies based on 
different logics. ODM 1.1 [26] is an ontology that relates some elements of some KRL 
models, mainly RDF, OWL, CL and Topic Maps.

2.2. General Purpose Ontologies Merging Top Level Ontologies and Lexical Ones
Foundational ontologies or, more generally, top-level ontologies define types that support 

and  guide the  checking,  organization  and  representation  of  the  ontologies  they  are 
included in. Two examples of well-known general foundational ontologies are DOLCE 
[27]  and  BFO  [28].  The  previously  cited  POLARISCO  [8]  relies  on  BFO  for  better 
formalizing and relating the terminologies and methods of various emergency response 
organizations.

Strictly speaking, lexical ontologies – e.g. ConceptNet 5.5 [29] – organize and partially 
define various  meanings of words from  natural languages and relate these words to these 
meanings.  However,  in  this  article,  the  expression  “lexical  ontologies”  also  refers  to 
“large mappings between general KBs”, e.g. the lexical ontology of UMBEL (now retired 
but included into KBpedia [30]) which had more than 35,000 types and 65,000 formal 
mappings between categories from (for example) OpenCyc, YAGO, DBpedia, GeoNames 
and schema.org.

Both  kinds  of  ontologies  –  top-level  ones  and  lexical  ones  –  are  domain-
independent, thus usable in risk/emergency management. The more a KB reuse types 
from such ontologies, the easier it is for people to create, update or organize this KB and 
the more any of its content can be retrieved using these types. Similarly, the more types 
two KBs share and are based on (hence, especially types from such ontologies), the easier 
the content from these two KBs can be aligned or fully integrated. Below, the word “merge” 
is  used for referring to any of these two processes.  Since such ontologies are sets  of 
definitions,  as  opposed to  assertions  of  facts  or  beliefs,  inconsistencies  between these 
ontologies  are  telltales  of  conceptual  mistakes,  such  as  over-restrictions  or 
misinterpretations.  Thus,  for  the  parts  these  ontologies  are  not  redundant  with  one 
another, such ontologies complement each other and, possibly after some making some 
corrections, can be merged without this leading to inconsistencies.

The Multi-Source Ontology (MSO) [31] is a step towards such a merged ontology. 
The MSO already merges several top-level ontologies as well as a lexical ontology derived 
from WordNet [32]. It will be complemented with other top-level ontologies, typically 
those from other merges included in large general ontologies such as YAGO and DBpedia. 
However, unlike for other merges, the ones in the MSO follow the general KS supporting 
methods described in the next subsection. Here are examples of what this entails.
 The  MSO  is  in  a  cooperatively-built  shared  KB  where  it  can  be  improved  and 

complemented by Web users.
 Modifications  in  such  a  KB  are,  whenever  needed, “additive”,  as  opposed  to 

“destructive”, since (i)  a modification can be made by adding a relation that states 
how a newly entered KR corrects another KR, (ii) KRs are represented as viewpoints, 
preferences or beliefs from particular knowledge providers, and (iii) particular relations 
must  be  entered  between  opposing  beliefs  for  them  to  be  later  automatically 
managed according to the wishes of each user. The next sub-section explains how. 
The other KS approaches  are essentially based on helping the creation, handling, 
retrieval and aggregation of (possibly competing) ontology modules – e.g. see [33] – and 
versions (for  KBs,  hence  for  ontology modules  too)  –  e.g.  see  [34].  Modules  and 
versions are relation sets which may be “partially redundant and inconsistent” with 
each other, i.e., which may be competing. Thus, when creating a KB, such sets often 
require choices by  ontology designers or users for selecting one or another. Using 
different  modules  or  versions lead to  different  KBs,  thus increasing the list  that 
some knowledge  users  have  to  choose  from  and sometimes  integrate.  With  the 
approach used in the MSO, additions do not require choices between relations and 
particular modules or versions can still be extracted using semantic queries.
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 In accordance with the previous point, when an ontology is merged into the MSO, 
its content does not need to – and is not – destructively modified to fix conflicts with 
other  ontologies.  Thus,  no  arbitrary  choice  has  to  be  made  and  this  eases  the 
integration of later versions of these integrated ontologies. 

 The MSO has a top-level organized by subtype partitions, and thus has advantages 
similar to those of a decision tree for knowledge inference and retrieval purposes. 
This organization is kept when new KRs are added into the above-cited kind of 
“additive but consistent” shared KBs. 
In addition to a lexical ontology and top-level ontologies, the MSO includes KRLO 

and hence  types  interesting for  categorizing  or  representing software  or  procedures. 
Section 3.2 shows how this last point is useful for risk/emergency management too.

2.3. KB Servers That Support Non-Restricting KB Sharing by Web Users
A user of a shared KB may want to complement it with a statement that contradict 

another  knowledge provider’s statement already in this KB.  However,  for general KS 
purpose, a KB should not include two statements that are logically inconsistent with one 
another, since classic logics – and therefore most inference engines – cannot handle KBs 
that are logically inconsistent (in other words, most KB management systems  are not 
based on a paraconsistent logical system or a similar approach). Similarly, for general KS 
purpose, avoiding inconsistencies in a shared KB cannot be achieved by having a person 
or a committee decide to  accept or not each new statement that is submitted to the KB. 
Indeed,  this  process  is  too  slow to  be  scalable  and it  is  important  for  general KS  to 
preserve  the  possibilities  for  knowledge  end-users  to  make  selections  themselves 
according to their particular needs. Similarly, general KS cannot use solutions based on 
selecting only consensual KRs or only KRs from a largest consistent subset of the KB. 
Using a software to dispatch the submitted statements into different KBs (depending on 
various  criteria)  for  each  resulting  KB to  be  internally  consistent,  e.g.  as  in  the  Co4 
protocol for building consensual KBs [35], is also not a scalable solution: with such a 
method, the number of required KBs can grow exponentially and these KBs may be 
mostly redundant with one another. 

Solutions start by associating each term (alias, identifier within the KB) and statement to 
its source (its author or, if unknown, the source document). This is already a standard 
practice when it comes to terms (alias, object identifiers), e.g., the systematic use of URLs 
(with or without abbreviations) is advocated by the W3C. Regarding statements, making 
this association is to acknowledge that the statements which are usually called  facts in 
KBs are actually  beliefs:  the associations between them and their  sources  become the 
actual facts. This association may be made via meta-statements that contextualize other 
statements to represent who created these last ones or believe in them. (Unfortunately, as 
of  2022,  the  W3C  has  not  yet  made  recommendations  regarding  ways  to  represent 
contextualizations and OWL does not support the representation of meta-statements). 
More generally, in KBs that include such beliefs, the statements provided by users can be 
categorized as being either “beliefs” or “definitions”. These last ones are always “true, by 
definition” since the meaning of the term they define is whatever its definitions specify 
(thus, if a definition of a term is inconsistent, this term means “something impossible”). For 
example, assuming that pm is an identifier for a particular user in a KB, then pm is entitled 
to create the term “pm:Table” (this identifier uses the term-prefixing syntax allowed by 
most KRLs advocated by the W3C) and to define it as a type for flying objects rather than 
as a type for some kinds of furniture. Thus, definitions do not need to be contextualized 
like beliefs are. 

Thus, to avoid direct inconsistencies between statements from different contributors 
(knowledge providers),  a  shared  KB  may have  an  editing protocol  that  leads  to  the 
entering of beliefs instead of facts. When a contributor C is about to add a belief that the 
inference  engine  detects  as  being in  conflict or  partially  redundant  with  another 
contributor’s belief already in the KB, the protocol may ask C to relate the two beliefs for 
(i) representing why this addition is necessary (this is also a way to make C realize that  
the addition is not necessary or has to be refined), and then (ii) let the inference engine 
exploit such relations between conflicting beliefs for making choices between them when 
such a choice is required. For example, if the statements “according to user X, birds fly” 
and “according to user Y, healthy adult carinate birds can fly”, then a relation must be 
added between these statements to state whether the second statement is a correction (by 
Y) of the first statement, or whether the first statement is a correction (by X) of the second 
statement. Such a relation can then be exploited (according to application requirements 
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or the preferences of the current user)  for automatically or manually selecting which 
statement  should  be  exploited by the  used inference  engine for  the  cases  when  this 
engine must choose between the two statements. If the purpose is simply to retrieve 
knowledge,  this  choice  may not  be  needed since,  when two statements  are potential 
answers to a query, a good and informative result may simply be to return both of them 
connected  by  the  relevant  corrective  relation.  One  particular  rule  for  an  automatic 
exploitation strategy may be a specification of the following informal rule: “when a choice 
between conflicting statements from trustable authors is needed, select the most corrected 
statements according to their inter-relations and then, if  conflicts remain, generate all 
maximal sets of non-conflicting statements and give the results of the inferences made 
with each set”. Different users may refine or complement this rule in many ways. 

The  shared KB editing protocol of the WebKB-2 server [36] implements and actually 
adds  some  precision  to  this  general  approach.  This  protocol  uses  the  addition  of 
particular relations to the KB not only to be able to manage KB sharing conflicts but also 
modifications to the KB: modifications are  additive, not destructive. For example, when 
objects (relations or terms) are made obsolete by their creators but are still used by other 
agents,  these objects are not fully removed but contextualized in a way indicating (i) 
regarding terms, who their  new owners are,  and (ii)  regarding relations,  who do not 
believe in them anymore. Regarding the addition of a belief  that the inference engine 
detects  as  being  in  conflict or  partially  redundant  with  already  stored  ones,  the  main 
principle of this protocol is to ask the  author of the belief to  connect it  to  each of these 
particular other stored ones via a relation of a type derived from each of the following ones: 
“pm:correction”, “pm:logical_implication” (alias, “=>”) and  “pm:generalization” (not all 
logical  implications  are  generalizations).  Here,  “derived”  means  either  “identical”, 
“inverse”, “exclusive with”, “subtype of”, “subtype of the inverse”, or “subtype of a type 
exclusive with”. E.g.,  “pm:non-corrective_specialization_only” is defined as a subtype of 
the inverse of “pm:generalization” as well as an exclusion to both “pm:correction” and “=>”. 
Thus,  all potentially  conflicting or  redundant  statements  are  (directly  or  transitively) 
connected  via  these  relations.  This  organization has many advantages  for  inferences, 
quality evaluations and checks of the KB, e.g. statements can be searched for via their 
exclusion  to some other  ones. Even more importantly for general KS, this organization 
supports  automatic  choices between conflicting statements  via  rules such as  the  one 
given in the previous paragraph. 

Since  knowledge  providers  can  specify  the  above-cited  relations  even  when  an 
inference  engine  is  not  able  to  detect  potential  conflicts  or  implicit  redundancies, 
knowledge providers can also specify such relations between informal statements within 
a  KB or  a  semantic  wiki.  Thus,  the  above-described  approach  can also be  used  for 
organizing the content of a semantic wiki and thus avoiding or solving edit wars in it. To 
sum up,  the approach described in  the previous paragraph works with any kind of 
information, does not arbitrarily constrain what people can store or represent, and keeps 
the  KB organized,  at  least  insofar  as  people or  the used inference  engine can detect 
redundancies  or  inconsistencies.  In  a  fully  formal  KB,  many implications  have to  be 
provided by  knowledge providers (e.g., these implications may be rules these  persons 
believe to be true) but generalization relations between statements can be automatically 
generated, e.g. for inference efficiency purposes. To obtain or keep a partially informal 
shared KB organized, and hence better exploit it for inferences and cooperation purposes, 
the more this KB uses some informal terms in its statements, the more it is useful to also 
ask the knowledge providers to specify generalization relations between statements.

2.4. KB Servers That Support Networked KBs
As  hinted  in  the  introduction  (first  paragraph),  there  is  a  huge  amount  of 

information that can be valuable for a domain such as risk/emergency management (and 
the information can also be used for many other purposes). All the information cannot 
be stored into a single individual KB (alias, physical KB). An individual KB is a KB having 
one associated KB server that stores this KB and manages query/update accesses to it – 
one server or, for security purposes, a set of equivalent ones. As opposed to such a KB, a  
networked KB (alias, virtual KB) is composed of a network of individual KBs where the KB 
servers exchange information or forward queries among themselves. 

The W3C has not made recommendations about networked KBs, it only advised KB 
authors to relate the terms of their KBs to terms of some other KBs. This advice tries to 
reduce the problems coming from the fact that most KBs are developed  independently 
from one another, and hence are just structured data for one another since their ontologies 
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are  not  related  or  poorly  related.  However,  this  strategy  for partially  independent 
development of KBs only very partially solves the above  referred problems: the more 
knowledge is added to such KBs, (i) the more inconsistencies and implicit redundancies 
they have between them, i.e. together, (ii) the harder it then is to align or integrate them, 
and (iii)  each user wanting to reuse such KBs  has to (re-)do such an integration work. 
Although there  are  numerous approaches for  partially  automatizing such a  work or 
aspects  of  it,  as  for  example  recently  summarized  by  [37],  their  success  rates  are 
necessarily  limited:  correctly  and  fully  integrating  two  (partially-)independently 
developped  ontologies  requires  understanding  the  meaning  of  each  object  in  these 
ontology and hence, most often, finding information that is not represented in them. 

Thus, for reasons similar to those given in the previous (sub-)sections, requirements 
for a networked KB to be scalable and interesting for general KS purposes are: (i) its overall 
content, i.e. the sum of its component KBs, should be as organized as if it was stored into 
one individual shared KB with the properties described in the previous subsection, (ii) 
neither  the  repartition  of  the  KRs  among  the  KBs,  nor  the  process  of  adding an 
individual KB to a networked KB, should depend on a central authority (automated or 
not),  and (iii)  no  user  of  the networked KB should have to know which component 
individual KB(s) to query or add to. Thus, ideally, for general KS on the Web, (i) there would 
exist  at  least one networked KB organizing all  KRs on the Web,  and (ii)  additions or 
queries to one KB server would be automatically forwarded to the relevant KB servers. 

These constraints are not satisfied by networked KBs based on distributed or federated 
database  systems.  Indeed,  in  these  systems,  the  protocols  that  distribute  or  exchange 
information and forward queries exploit the fact that each individual KB or database has 
a  fixed database schema or ontology, i.e. one that is not modified by its end-users (e.g.  
data providers). On the other hand, in general KS, the ontologies of the individual KBs 
are  often updated by their contributors. Many networked KB architectures  exploit such 
database systems, including the architectures advocated in risk/emergency management 
related articles, e.g. those of [15].

Similarly, these constraints are not satisfied by networked KBs based on peer-to-peer 
(P2P) protocols  or multi-agent system (MAS)  protocols.  Indeed,  for exploiting the KRs 
within these KB – e.g., for the distribution, indexation or exchange of knowledge – these 
protocols  also  have  to  rely  on  some  fixed  and/or  centralized  ontologies  (and/or  use 
knowledge similarity measures or automatic ontology integration techniques when these 
approach are sufficient for the intended task or domains; these measures or techniques 
may be provided by the individual servers, peers or agents). These fixed ontologies may 
be stored within the individual servers, software agents or peers – or sometimes even the 
P2P routing table, as described by [38]. They may also be external to them, with more 
structured networks (e.g. the use of super peers) or centralized solutions, for instance as 
described by [39–41]. 

For satisfying the above-cited constraints, the solution proposed in [19] by the first  
author of this present article  is based on the notions of “(individual KB) scope” and 
“nexus for a scope”. The rest of this section presents the underlying ideas of a recent 
extension this solution by the first author. An  intensional scope is a KR specifying the 
kinds of objects (terms and KRs) that a shared individual KB server is committed to 
accept from Web users. This scope is chosen by the owner(s) of this shared individual 
KB. An intensional core scope is the part of an intensional scope that specifies the kinds of 
objects that the server is committed to accept even if, for each of these kinds of objects, 
another intensional core scope on the Web also includes this kind of objects (i.e. if at least 
another  server  has made the same storage commitment for this kind of objects).  An 
extensional scope is a structured textual Web document that lists each formal term (of the 
ontology of the individual KB) that uses a normalized expression of the form “<formal-
term-main-identifier>__scope  <URL_of_the_KB>”.  Since  extensional  scopes  are  Web 
documents, such a format enables KB servers to exploit Google-like search engines for 
retrieving the addresses of KBs storing a particular term. A (scope) nexus is a KB server 
that has publicly published its intensional and extensional scopes on the Web, and has 
also specified within its non-core intensional scope that it is committed to accept storing the 
following kinds of terms and KRs whenever they do not fall in the scope of another existing nexus : 
(i)  the  subtypes,  supertypes,  types,  instances  of  each  type  covered  by  the  selected 
intensional scope, and (ii)  the direct relations from each of these last objects (that are 
stored in this KB only as long as no other nexus stores them). (The WebKB-2 server that 
hosts the MSO is a nexus that has at least the MSO as intensional scope. Thus, this server 
can be used by any networked KB as one possible nexus for non-domain specific terms 
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and KRs.) Then, “an individual KB (server) joining a networked KB” simply means that 
the KB server is being committed not only to be a nexus for its intensional scope but also 
to perform the following tasks whenever a command (query or update) is submitted to the 
KB server:
 The first task is, insofar as the intensional scope allows it, to  handle this command 

internally via the KB sharing protocol of WebKB-2 or another protocol with similar 
or better properties.

 The second task is to forward this command to the KB servers which, given their 
scopes, may handle it, at least partly. These servers are retrieved via their published 
extensional scopes. 
Thus, thanks to this propagation, each command is forwarded to all nexus that can handle it, 

and no KB server has to store all the terms of all the KBs, even for interpreting the published 
scopes of other nexus. To counterbalance the fact that some forwardings of KRs may not 
be correctly performed or may be lost due to network errors, i.e. to counterbalance the 
fact  that  this  “push-based strategy” may not  always  work,  each  KB server  may also 
search other nexus having scopes overlapping its own scopes and then import some KRs 
from these nexus: this is the complementary “pull-based strategy”. KB servers that have 
overlapping scopes may have overlapping content but this redundancy is not implicit 
and hence, as explained in the previous subsection, not harmful for general KS purposes. 

To sum up, Section 2.4 showed how some inter-KB organization(s) can replicate an 
inner-KB organization that has advantages and supports that are described in Section 2.3 
and Section 2.2, which themselves are made possible via the language-related techniques 
introduced in Section 2.1.  Section 3 illustrates  some applications of some ideas from 
Section 2.1 and Section 2.2 for some knowledge useful in risk/emergency management.

3. Examples of Representations for General Knowledge Sharing
In the present section, for clarity and concision purposes, the FL notation [19] is 

used rather than a W3C KRL notation. Thus, for identifiers, the namespace end delimiter 
is “#” (as in pm:Table) instead of “:” in W3C KRL notations (as in pm:Table); indeed, in FL 
“:” is the end delimiter for relation nodes, as in most frame-based KRLs.

3.1. Organization of a Small Terminology about Disaster Risk Reduction
In 2017, the United Nations office for Disaster Risk Reduction (UNDRR) has defined 

a  “terminology  about  disaster  risk  reduction  [42]”.  It  is  here  now  referred  to  as 
“UndrrT”. In [43], we represented UndrrT in FL, increased its organization and stored it 
in  a  Web document.  As illustrated by Figure  1 –  which uses  the  Uniform Modeling 
Language (UML) [44] – and Box 4 (which uses FL [19]), this document organizes UndrrT 
into  a subtype hierarchy that  uses (i)  whenever possible,  subtype partitions or  other 
subtype exclusion sets, (ii) the MSO top-level concept types, and (iii) some additional 
types when this is required for categorization purposes. This Web document – which is 
both an HTML document and a KR storing document – is also informally structured via 
sections and subsections, with respect to some of the MSO types, thus in a non-subjective 
and systematic way. Thanks to these various points, the terms and relations between the 
terms in  UndrrT are  much easier  to  understand and retrieve  (by following relations 
between them or via queries) than terms in the original UNDRR document: these last  
terms are only informally defined and only listed in alphabetic order. 

Among three points listed in the previous paragraph, the first two also enable some 
automatic checking of the way the UndrrT terms are used in KRs or specialized by KRs, 
in order to (i) detect full or partial misinterpretation of some of these terms, and (ii) guide 
knowledge representation. E.g., instances of the type undrrT#Disaster_risk_management are 
defined to be usable as source nodes in relations that have a signature with first parameter 
undrrT#Disaster_risk_management or one of its supertypes. Since one of these supertypes 
is pm#Process, and since the MSO provides many types of relations from pm#Process (e.g 
pm#object,  pm#parameter,  pm#duration,  pm#agent,  pm#experiencer,  etc.),  such relations  are 
usable  (and  similarly  by  all  people)  from  all  instances  of 
undrrT#Disaster_risk_management.

The use of the MSO for representing UndrrT also highlighted important ambiguities 
that are not resolved by the sometimes lengthy informal definitions associated with the 
terms.  E.g.,  are  the  types  undrr#Vulnerability,  undrr#Exposure and  undrr#Resilience 
meant to be specializations of what  pm#Characteristic_or_dimension_or_measure means 
or of what  pm#State (which refers to non-evolving kinds of situations) means? In our 
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UndrrT representation [43], we  selected the first interpretation  since then representing 
information using these types is easier than with the second  interpretation. However, 
some other  persons using UndrrT probably have interpreted and used  these UndrrT 
terms as if they represented states. These two interpretations cannot be reconciled: they 
are exclusive. Thus, general KS is clearly reduced by such ambiguities.
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Legend: 
the 

graphic syntax of UML – the Uniform Modeling Language [44] – is used for 
1. supertype relations: these are the untyped upward relations;  for the other relations, the type 

name is in italics;
2. relation cardinalities (e.g. “1..*”), i.e. quantifiers for the destination nodes 

(the quantifier for the source node of these relations is implicit: it is always the universal  
quantifier);

3. the “{disjoint, not complete}” specification for the first above set of subtypes: the types in this 
set are exclusive but the set is not complete and hence it is not a subtype partition.     
For other details, see Box 4. 

Figure 1.  UML-like representation of the relations represented with FL in Box 4 (Box 4 shows a 
small part of the above-cited FL representation and extension of UndrrT) [44].



Sustainability 2023, 15, 10803 16 of 26

Box 4. Commented extract of the FL representation of the UNDRR terminology (as in Figure 1, this 
extract does not include relations for informal definitions and annotations but here there are many 
comments that explain the meaning of the used abbreviations and FL expressions).

//Comments are prefixed by "//" and here in italics; the FL namespace separator is '#', not ':'.

pm#undrrT#Disaster_risk_handling  //"pm#undrrT#": the type, created by pm, was implicit in UndrrT

  /^  pm#Process,  //"/^" or "↗": supertype relation in FL

  pm#object: 1..* undrr#Disaster_risk,  //"1..*": one or several

  \.part:  //"subtype relation" and "part relation between the instances of the connected types"

       e{ //In addition to be destinations of "\.part", the next two types are exclusive: "e{…}"

          undrrT#Disaster_risk_assesment  

          (undrrT#Disaster_risk_management  //"(...)": isolation of relations starting from this type

             pm#goal: 1..* (undrrT#Disaster_risk_reduction

                              pm#parameter: 0..* undrrT#Disaster_risk_reduction_strategy_or_policy ),

             \.  //"\." or "↘": subtype relation in FL

                //No "e{ ...}" here since the following subtypes are not necessarily exclusive

                undrrT#Prospective_disaster_risk_management   //This type and its next four siblings

                undrrT#Corrective_disaster_risk_management    //  are direct subtypes of

                undrrT#Compensatory_disaster_risk_management  //  undrrT#Disaster_risk_management

                (undrrT#Community-based_disaster_risk_management

                  \. undrrT#Local-and-indigenous-peoples_disaster_risk_management )

                (undrrT#Mitigation  //Since this type name is ambiguous, pm adds a clearer one

                  = pm#undrrT#Disaster_mitigation            //  via this equivalence relation

                ) __[author: pm]  //pm believes that the last subtype relation is true even though

                                  //  it is not in UndrrT (neither explicitly nor implicitly)

          )  //End of relations from undrrT#Disaster_risk_management

        }.  //End of the exclusion set and of all relations

3.2. A General Model for Organizing and Representing Search&Rescue Information
As opposed to other general ontologies, the MSO provides a type for “description 

instruments or results” (alias, “information objects”, e.g. procedures, stories, languages, 
object-oriented classes, maps) and many subtypes for it, most of which are from KRLO. 
These types are useful for categorizing and representing many information objects that 
can  be  in  risk/emergency management.  Box 5  shows that  the  Search&Rescue domain 
requires  many  of  these subtypes  for  categorizing  information,  e.g.  for maps  and 
procedures exploiting or enriching maps.

Box 5 shows the distinction between concrete and abstract information objects. It 
leads  to  distinguishing  concrete maps  from  abstract ones.  A  concrete  map,  e.g.  one 
displayed on a screen paper or on paper, is a 2D or 3D graphic representation of physical  
objects. On the other hand, an abstract map is a structural representation of a concrete 
map.  Advanced  Search&Rescue tasks  imply  that  (i)  search  functions  must  exploit 
characteristics  of  map  objects,  and  (ii)  search  agents  doing  terrain  mapping  or 
discovering victims or possible indices of victims must add objects to the map. Hence, 
structurally, an abstract map for such tasks should not be a set of pixel representations but 
should permit the storage, querying and update of (i) object representations that are, were 
or may be part of the map, and hence also (ii) at least their  partOf relations, types and 
attributes. These requirements do not mean that such maps should be directly stored in a 
KB, using relations. Indeed, using KRs would not only be an inefficient way to store and 
handle spatial coordinates or relationships of map objects, this would also make them 
difficult to exploit via classic programs, i.e. those only based on classic structures such as 
object-oriented classes. Therefore, such maps should remain  abstract data structures but 
should be  represented or  implemented in  much richer  structures than those in  binary 
formats for the 2D/3D abstract maps: raster image formats (pixel-based formats) and 
vector  formats  (graphics/geometry  +  texture  based format,  e.g.  SVG and OBJ).  More 
information can be described via the Geography Markup Language (GML) which uses a 
very  restricted  kind  of  KRL  –  GML is  used  by  the  Web  Feature  Service  (WFS),  an 
interface model created by the Open Geospatial Consortium (OGC) to support requests 
for  geographical  features  across  the  web using platform-independent  calls.  However, 
GML is not for storage purposes. In any case, ideally, for each physical object, such a map 
would  store  a  reference  (e.g.  an  identifier  or  a  pointer)  to  an  information  object 
representing this object in a KB, and this KB would support semantic queries about such 
objects. For classic queries – the structural and lexical ones – abstract data structures are 
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sufficient.  For  conceptual  queries  or  navigation,  semantic  relations  stored  in  data 
structures can be dynamically extracted and imported into the KB, when needed and 
based  on  the  kinds  of  needed  relations.  To  that  end,  FL  and  WebKB-2  have  been 
extended to enable the reference to – and, when needed, automatic call of – “relation 
generators” (as we call them); they are represented in ways roughly similar to normal 
relations or to function calls.

Box 5. Subtype hierarchy of MSO types that are useful for categorizing description-related types in 
Search & Rescue representations.

//For clarity purposes, an informal representation is used below, not a representation in FL:

//  an indented list is used for showing subtype relations between types,

//Still for clarity purposes, from now on in boxes and figures, the source prefix of each

//  type identifier is left implicit (-> all types come from the MSO).

//Below, in this box, bold italic characters are used for referring to terms that are listed in Box 6

//  while bold non-italic characters are simply for highlighting purposes.

Description_instrument-or-result-or-container //Alias Description_object

  Description_semantic-content                               //E.g. Logic_proposition

  Description_instrument-or-result                           //Alias Information_object

    Abstract_description_instrument-or-result                //Alias Information_object

      Abstract_description_instrument-or-result_wrt_the_described_thing

        Situation_abstract_description_instrument-or-result  //E.g. Principle_of_Coriolis_acceleration

          Process_abstract_description_instrument-or-result   

         Control-structure_based_description_instrument-or-result    //E.g. While_loop, Abstract_procedure

              Abstract_function                       

            Declarative_based_abstract_description_instrument-or-result //E.g. Petri-Net 

            Search_algorithm

              Graph-traversal_and_path-search_algorithm    //E.g. the A* algorithm

          State_abstract_description_instrument-or-result  //E.g. Object_oriented_class, Array

        Entity_abstract_description_instrument-or-result  //E.g. Path_description, Integer and each term in Box 6

      Abstract_description_instrument-or-result_wrt_the_used_method_or_instrument

        Non-declarative_abstract_description_instrument-or-result  

        Declarative_abstract_description_instrument-or-result  

          Semantic_abstract_description_instrument-or-result 

            Semantic_description_instrument           //E.g. Java_semantic, Logic_semantic, Type

            Semantic_description_result               //E.g. Semantic_of_a_KB, Semantic_of_a_program

            Logic-independent_semantic_description_result        //E.g. Logical_statement

            Logic-dependent_description_instrument               //E.g. Logical_sentence

          Structural_abstract_description_instrument-or-result

            Abstract_data_type                        //E.g. Object_oriented_class, Array, Integer

            Structural_abstract_language-or-language_element     //E.g. Java_abstract_grammar

    Concrete_description_instrument-or-result

      Concrete_description_result                     //E.g. Java_concrete_function, Concrete_map

      Concrete_description_instrument                 //E.g. Java_concrete_grammar, Character

        Structural_concrete_description_instrument    //E.g. Concrete_data-structure_type

        Semantic_concrete_description_instrument      //E.g. Concrete_semantic-structure_type

  Description_container                               //E.g. File, Software, Web_server, KB_server

Box  6  shows  a  generic  representation  of  such  abstract  maps  that  is  useful  for 
Search&Rescue: it is a list of semantic relations between such maps and some other kinds 
of objects.  This representation can be viewed as a generalization or “minimal general 
specification” of abstract data structures for such maps. More precisely, Box 6 is a top-level 
ontology – hence a minimal general specification, listing or model – of functions and of 
the most  interesting kinds of objects that these functions could exploit,  among those 
useful for Search&Rescue. Before explaining the notation used in Box 6, it should be that 
the goal of this box is to represent three combinable important functions:
 A first one for retrieving objects (generally, people) within a map, given some of their 

types or ranges for their attributes, e.g. a range for the expected health or social 
value of actual/potential victims at particular places in a map (since an often-used 
strategy is to first try to save the healthier and most socially valuable victims).

 A second  one  for  computing  values (possibly  with  some  associated  certitude 
coefficients)  for  particular  attributes  of  particular  objects  in  a  map,  given  other 
parameters such as the environmental context (weather, ...) and when the rescue 
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begins and/or when the objects can or could be retrieved (since, for example, some 
victims may be difficult to save by the time they are found).

 A third one for  computing the  best  paths (possibly  given strategic  rules  and/or  a 
search algorithm)  from a starting place to others (thus,  possibly an area)  for finding 
objects of given attributes, with additional attributes to maximize (e.g. the safety of the 
rescuing  agents  and  of  the  victims)  and  others  to  minimize  (e.g.  the  power 
consumption of a rover used for exploring a disaster area in search of victims). 
In object-oriented (OO) programs, functions are often associated with some of the 

objects they exploit by being represented as methods of classes for these objects. This 
kind of association, which in KRLO is represented via a relation type of name “method”, 
helps normalizing and organizing the code, and is now commonly supported by  most 
common programming languages. Box 6 uses “method” relations since it is meant to be a 
minimal general specification of important primitive functions for Search&Rescue. The next 
three points comment this use.
 Box 6  uses“_{”  and “}”  to  delimit  the  set  of  relations  that  define  a  type.  These 

delimiters are not necessary in FL but are used here to make the specifications look 
more like those in  common OO-like notations, UML textual notations and frame-
based notations, and hence more intuitive to people that are used to those notations. 
(E.g. the separators “,” and “;” are used in Box 6 where “ ” and “,” would otherwise 
be used in classic FL.) However, despite this intended syntactic similarity with OO 
classes, genuine KRs are represented in Box 6, not just OO classes; indeed, genuine 
relations are used, not class attributes (unlike relations, attributes are local to classes 
and are not first-order entities). 
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Box 6. Commented FL representation of object-oriented classes for Search&Rescue.

//The types in bold characters (in italics or not) are Abstract_representation types. The types in

//  italics (and not in bold) are information object types that are not Abstract_representation types.

//The other types (except for "Thing") are subtypes of Characteristic_or_dimension_or_measure.

//Variable names are prefixed by "?", as in many other KRLs. 

//As in the previous boxes, when comments at the right of some code line are spread on multiple lines,

//  each expression in a line is mostly focused on the code of that line.

Abstract_map  /^  Abstract_representation,      //Representation of a class for maps

 _{ attribute: 1 Map_scale,          //The scale of a map should be associated to it

               1 Temporal-point-or-region_coordinate ?timeStamp,   //When the map was valid

               1..3 Spatial-point-or-region_coordinate;            //A 2D/3D point/area

    part: 1..* Physical_object_representation_in_an_abstract_map;  //Object parts

           //This set can be implemented via a 2D/3D array or an SVG structure

    method: Abstract_map___objects_possibly_at      //------ For retrieving objects in (a portion of) a

            (1 Abstract_map, 1..3 Spatial-point-or-region_coordinate,          //  map (specified here),

             0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects,          //  wrt. their types

             0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects) //  or attributes, e.g.

                  //  health, social value, etc. The next line specifies the types in the returned set 

            -> .{1..* Physical_object_representation_in_an_abstract_map} //-> The retrieved objects

            { }; //The body of this method could be written here, within these "{" and "}"

    method: Abstract_map___values_of_objects_possibly_at     //------ For knowing the values of objects

            (1 Abstract_map, 1..3 Spatial-point-or-region_coordinate,    //  in (a portion of) a map

             0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects,    //  given the types&attributes

             0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects, //  of searched objects

             1..* Temporal-point-or-region_coordinate ?valuesDuringThisTimePeriod, //  at a given time,

             0..* Environmental_context ?environmentalContextOfTheSearch)  //  wrt. the weather, …

            -> .{0..* Representation_of_the_value_of_a_physical-object}; //-> The retrieved values

    method: Abstract_map___best_paths_from_somewhere_to_at_least_1_object //------ For knowing the best

            (1 Abstract_map,                                              //  paths to take (in a map),

             1..3 Spatial-point-or-region_coordinate ?fromPlace,          //  from a place to

             1..3 Spatial-point-or-region_coordinate ?regionOfSearchedObjects,  //  another, to find

             0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects,           //  objects of given

             0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects, //  attributes, at

             1..* Temporal-point-or-region_coordinate ?valuesDuringThisTimePeriod,  //  a given time,

             0..* Environmental_context ?environmentalContextOfTheSearch,  //  wrt. the weather, ...,

             0..* .{Thing, 1..* Type ?typeOfAttributeOfTheThing,       //  given constraints on the

                           0..1 Value ?maxValue, 0..1 Value ?minValue  //  types+values of the objects

                   } ?constraintsDuringTheSearch,                      //  to find, while minimizing

             0..* Type ?typeOfAttributeToMinimizeForBestPaths,  //  some attributes (e.g. Battery_use)

             0..* Type ?typeOfAttributeToMaximizeForBestPaths,  //  & maximizing others (e.g. Safety)

             0..1 Abstract_function ?fctToSelectBestPaths,      //  and/or using a function to do so;

             0..1 Integer ?MaxNumberOfBestPaths,                //  a maximum number of best paths and

             0..* Search_algorithm ?preferredSearchAlgorithm)   //  a given algorithm may also be used

            -> 0..* .{1..* Spatial-point-or-region_coordinate} //-> The computed best paths

  }.

Physical_object_representation_in_an_abstract_map

 _{ attribute: 0..1 Reference_to_a_semantic_representation, //Identifier of (or pointer to) a KB object

                                                            //  that represents this physical object

               1 Representation_of_the_location_of_a_physical-object,

               0..* .{ 1 Physical-object_attribute,  0..1 Certitude_of_a_value };

    part: 0..* .{ 1 Physical-object_representation_in_an_abstract_map ?embeddedObject,

                  0..1 Certitude_of_a_value };

    part of: 0..* .{ 1 Physical-object_representation_in_an_abstract_map ?embeddingObject,

                     0..1 Certitude_of_a_value };

    method: Physical_object_representation_in_an_abstract_map___value

            (1 Physical_object_representation_in_an_abstract_map, 

             1..* Temporal-point-or-region_coordinate ?valueDuringThisTimePeriod,

             0..* Environmental_context_of_a_search)

            -> 1 Representation_of_the_value_of_a_searched_physical-object

  }.

Representation_of_the_location_of_a_physical-object

 _{ attribute: 1..3 .{ 1 Spatial-point-or-region_coordinate, 0..1 Certitude_of_a_value }  }.

Representation_of_the_value_of_a_physical-object

 _{ attribute: 1 Quantitative-or-qualitative_social_value_of_something, 1 Certitude_of_a_value  }.

 One  of  the  advantages  of  associating  functions  to  information  structures  via 
“method”  relations  is  that  this  supports  the  use  of  an  intuitive  OO-like  naming 
scheme for the functions: in Box 6, see the “__” within method names. These names 
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follow the naming scheme “className__coreMethodName”. With a genuine OO 
programming language, the part before the  “__” is omitted because when a method 
is called on a particular object, this one (and hence, indirectly, its class) is specified 
just before the method, e.g. as in “objectName.coreMethodName” when the classic 
dot notation is used.  With a KRL, methods are not  local to an object or  class – like 
relations from a object are not local to this object in the way its attributes are – and 
hence the name of the class has to be specified with the method name, e.g. via the 
above-cited normalizing and compact OO-like naming scheme.

 Another advantage of such associations is that, combined with the use of UML-like 
cardinalities (e.g. “1..3”, “0..*”) in the parameters of these methods  or functions, 
they  provide  rather  easy-to-use  ways  to  generalize  –  or  abstract  away  – 
implementation  particularities,  at  least  compared  to  programming  languages. 
Indeed, with a programming language, class definitions are only tree structures and 
functions  do  not  use  cardinalities  nor  have  successive  default  parameters;  this 
generally forces a user of such languages to (i) cut a graph of relations (i.e. the model 
in the user's mind) into pieces when representing it via such structures, (ii) make the 
relations implicit, (iii) choose a rather arbitrary embedding order between the graph 
elements, and (iv) implement various similar versions of a same function, based on 
particular aggregations of datatypes for the parameters.

3.3. Representations about Automatic Explorations of a Disaster Area
This subsection shows how the process of systematically exploring a disaster area (e.g. 

by a rover, to search for victims) can be represented at a high-level (as well as lower ones). 
The reuse of functions from the previous subsection is not shown. The focus here is to 
illustrate  how  (the  elements  of)  procedures,  tasks  or  processes  can  be  variously 
organized  and  represented,  via  KRs.  Box  7  provides  an  example  systematic  search 
procedure written in a procedural notation. Such procedures can often be automatically 
converted  into  pure  functions  (and  this  is  the  case  of  the  one  in  Box  7),  thus  in  a 
declarative  way.  Pure  functions  can  then  be  represented  via  a  KRL  that  handles 
functions, e.g. FL and KIF. With FL, or with KRLO and any KRL, procedures can also be 
directly represented in a state-based form. Once in a KB, functions and procedures can 
be organized via generalization relations and also generalized by more classic kinds of 
KRs, e.g. logical formulas representing rules.

Box 7. Commented procedure for a systematic search by a rover, one based on an infinite loop in 
which the only decision is to go ahead or not; the notation used here is common to C and Java but 
an FL version can be obtained by replacing each “(” by “_(”.

while ( true )  //Infinite loop. Below, "()" indicates a function call (the parameters are not specified)

{ if ( further_exploring_is_not_useful() )  //To decide that, the methods of Section 3.2 are used 

  { come_back_to_base();  break; } //"break": the loop is broken when the rover has returned

  else if ( going-ahead-and-then-come-back-to-base_is_not_possible() )  //Via the methods of Section 3.2

         come_back_to_alternative_route (); //E.g., given battery levels, obstacles, mechanical problems

       else  go_ahead();

}  

// Here are two example cases for a rover exploring underground spaces and fails, under debris and ruins:

// * The rover cannot continue on a particular path (e.g. because it would risk getting stuck):

//   it returns in the opposite direction to a point where it can continue its exploration,

//   an intersection with a not yet explored path.

// * The rover has explored the last path (-> "normal" end of mission) or

//   cannot continue exploring (e.g. because it has not enough energy): it returns to its base.

Figure 2 illustrates some relations (a partOf one and several subtype ones) between top-level tasks 
in  Search&Rescue.  Such  relations  can  be  exploited  to  categorize  functions,  e.g.  to  exploit  and 
organize a library of functions useful for  Search&Rescue, as  explained in the introduction of this 
article.  Such  a  library  may  for  instance  organize  functions  that  represent  different  ways  of 
performing similar processes. This library – and thus programs that reuse it – can also include a 
function selecting the most relevant of these different ways for a particular environmental context 
given as a parameter. Box 8 illustrates some further subtype relations from one of the tasks cited in 
Figure 2.
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Box 8. FL categorization of the “Safe_path_backtracking” task or process mentioned in Figure 2.

Selecting_a_path /^ Process,          //reminder: here, only type names are used (not type identifiers)

  part of: 0..* (Search_and_rescue /^ Process),

  \. (Selecting_a_safe_path \. (Selecting_a_safe_and_recently_explored_path \. Safe_path_backtracking) ),

  \.  partition

     { Path_selection_when_going_ahead_is_possible_and_useful

       (Path_selection_when_going_ahead_is_not_possible_or_not_useful \. Safe_path_backtracking)

     }.

Legend: as in Figure 1

Figure 2. UML-like representationof some relations between some processes of Search&Rescue [44].

3.4. Representations about Ways to Create Rovers Adapted to a Terrain
The research articles of [45] or [46,47], here ordered by increasing length, describe a 

simulation  tool  helping  to  design  rovers  adapted  to  a  terrain,  for  Search&Rescue 
purposes. Since the content of these article is in natural language, it is difficult – from this 
content, manually or automatically – to identify, match, represent and synthesize (i) all 
the important described objects (e.g., the described tasks and their instruments, subtasks, 
inputs, outputs, ...), and (ii) the relations between these objects. Box 9 illustrates relations 
from processes and software, and Box 10 illustrates relations from artifacts, attributes 
and descriptions. These boxes also show how the represented types are categorized as 
subtypes of top-level types from the MSO. The relations are representations are mostly 
formal but the use of informal parts (the strings within double quotes) is also illustrated 
since it  is  sometimes difficult or not worthwhile to formalize everything.  Without all 
such  relations,  such  objects  cannot  be  retrieved via  semantic  browsing  or  querying. 
Without a shared KB (such as the ones described in Section 2.3) where such objects and 
relations can be found and complemented, general KS cannot be supported. Ideally, such 
relations  should  be  added  into  shared  KBs  by  the  information  authors  (researchers, 
engineers, technicians, …). Indeed, as earlier noted, relying on knowledge engineers to 
read  articles  and represent  such  relations  is  not  scalable  and  articles  often  lack  the 
information  necessary  for  inferring  some  generalization  relations  or  other  important 
relations.
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Box 9. Commented FL representation of the “important information directly related to processes or 
software” from three articles about “3D simulation of Search&Rescue Autonomous Systems (SR-AS) 
and  their  environments  for  disaster  management”representation  of  object-oriented  classes  for 
Search&Rescue.

  //From now on, "0..*" cardinalities on relation destinations are left implicit

3D_simulation_of_an_SR-AS_and_its_environment_for_a_mission  //"SR-AS": Search&Rescue Autonomous Systems

  /^ (3D_simulation  /^ Process),  //A direct supertype and an indirect one

  object: 1..* SR-AS,  //SR-AS is detailed in Box 10 (the next box) 

  during: (Disaster_rescue_team_deployment time: "first hours after a disaster" ), //"...": informal representation

  part of: (Finding_a_best_design_and_configuration_of_an_SR-AS_for_a_mission 

              part of: (Elaborating_a_disaster-recovery-management_strategy

                          part of: (Disaster-recovery_management /^  Process) )

           (Re-acquiring_knowledge_on_an_area_that_had_environmental_alterations

               part of: Elaborating_a_disaster-recovery-management_strategy ),

  result: (Assessment_of_an_SR-AS_for_a_mission_or_of_a_strategy_for_this_mission

             /^  Description_instrument-or-result-or-container,

             \. Best_design_and_configuration_of_an_SR-AS_for_a_mission

                Assessment_of_the_configuration_of_an_SR-AS_for_a_mission

                Assessment_of_a_disaster-recovery-mission_success_expectancy

                Assessment_of_how_much_time_or_the_SR-AS_saves_for_the_rescue_team

                Assessment_of_the_autonomous-system_survival_probability,

  input: Representation_of_the_environment_of_an_area  //cf. end of Box 10

         (Objectives_of_the_Search-and-Rescue_mission /^ State, 

            part: Disaster-result_state  Disaster-victim-location_state ),

  instrument: (Software_for_simulating_an_autonomous-system_and_its_environment

                \. (3D_simulation_system /^ Description_instrument-or-result-or-container,

                      \. (Gazebo-3D  description: "graphic engine that can perform 3D physical simulations while

                                         displacing a rover within a surrounding virtual world, hence allowing  

                                         one to test algorithms, design robots and simulate their behavior",

                            part: (Physics_engine part: Mathematical Engine, input: Scenario )

                                  Open-gestures_recognition_engine  Terrain-data_generating_engine

                                  (Graphic_rendering_engine  input: Texture  Light  Shadow) )

                   (Robot_Operating_System  description: "software usable for communication between robot parts",

                      part: (RViz description: "3D visualization environment for ROS") ) ),                    

  part: 

    (Terrain_generation_and_modeling

       output: (Digital-Elevation-Model_of_the_terrain 

                  /^ (Digital-Elevation-Model /^ Description_instrument-or-result-or-container),

                  part: (Final_Digital-Elevation-Model_of_the_terrain  

                           part: First_Digital-Elevation-Model_of_the_terrain ) ),

       part: (First_phase_of_terrain_acquisition_for_terrain_generation_and_modeling

               input: (Terrain_description /^ Description_instrument-or-result-or-container,

                        \. Geographical-Information-System_data,

                        result of: (Terrain_surveying_or_mapping  \. Photogrammetry  Land_surveying,

                                      instrument:  //the next type is defined in Box 10

                                        Sensor_artefact_that_can_be_used_as_terrain_mapping_instrument) ),

               output: First_Digital-Elevation-Model_of_the_terrain )

             (Integrating_objects_and_characteristics_to_the_simulated_terrain_to_enhance_its_realism 

                input: First_Digital-Elevation-Model_of_the_terrain,

                parameter: Physical_property,  //cf. end of Box 10

                part: Analysis_of_properties_of_the_terrain_eg_roughness_density_bounciness_stiffness

                       Generating_random_variations_of_terrain_properties_eg_via_Monte-Carlo_distribution

                       Adding_real_obstacles_gathered_from_low-altitude-drone_flight, //rocks, rubble, …

                output: (Final_Digital-Elevation-Model_of_the_terrain

                           description: "this includes a 3D CAD design, ground parameters (bounciness,

                                friction, stiffness, ...), existing data, characteristics features of

                                rigid bodies, kinematics laws, coefficients that describe an impact, …")

             ) )

    (Robot_designing input: (Robot_design_description annotation:"description of architectures/shapes (e.g. 

                                  via 3D CAD), physical_properties, behaviors, sensors and actuators" ) )

    (Environment_parameterization_in_the_3D_simulation

       input: Representation_of_the_environment_of_an_area ).  //cf. end of Box 10
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Box 10. Commented representation of the “important information directly related to artifacts, 
attributes and descriptions” from three articles about “3D simulation of Search&Rescue Autonomous 
Systems (SR-AS) and their environments for disaster management”.

SR-AS = Search-and-rescue_autonomous-system,  /^ Artefact,

  interest: "can reach locations unattainable or dangerous for humans",

  \. (Ground-based_SR-AS 

        \. (ArcTurius_Rover annotation: "created by the LTCI laboratory of Télécom Paris",

              part: (Hokuyo_UTM-30LX_Scanning_Laser_Rangefinder_LIDAR 

                       annotation: "chosen for ArcTurius_Rover because this LIDAR supports the

                                    Robot_Operating_System (ROS) communication system" ) ) ),

  part:  //there are many kinds of parts; below are examples

        (SR-AS_joint  /^ (Joint /^ Concrete_spatial-entity_playing_a_role),

           \. (SR-AS_fixed_joint annotation: "no freedom degrees")

              (SR-AS_hinge_joint annotation: "rotates along the axis and has some limited range specified by

                 the lower and upper limits; can for instance be used to describe the movement of a wheel

                 with respect to the chassis to which it is attached"),

           annotation: "The modeling of joints (e.g. maximum efforts+velocity they can endure) is very

                        important since (i) this permits the integration of many physical parameters, and

                        (ii) they play a key role in the physical integrity of the SR-AS after a collision" )

        Actuator_artefact_that_can_be_a_useful_part_of_an_SR-AS 

        Sensor_artefact_that_can_be_a_useful_part_of_an_SR-AS.  //defined below

Sensor_artefact  /^ Artefact Sensor,

  \. (Sensor_artefact_that_can_be_a_useful_part_of_an_SR-AS

       \. (Distance_sensor_artefact \. Ultrasonic_sensor  Micro-wave_sensor  LIDAR  Camera)

          (Location-and-attitude_sensor_artefact \. Inertial-measurement-unit_based_sensor_artefact)

          Odometer_artefact  (Radar \. Ground_penetration_radar),

       annotation: "It is important to precisely model the sensors of an SR-AS (shape, size, mass,

          relative position wrt collision domain of the rover, ...), e.g. evaluating the position of 

          a LIDAR for minimizing the impact of external noise. With respect to sensor modeling,

          some parameters to be taken into account while modeling a laser sensor include: 

          (i) physical shape, (ii) relative poses with respect to SR-AS components, (iii) number of 

          samples per unit of time, (iv) angular resolution, (v) minimum and maximum distance, and 

          (vi) interference and noise (since sensors are sensitive to noise). 

          For this last point, a Gaussian distribution with some moment parameterization

          (that is, given the mean and covariance of the distribution) can be used."

     ),

  \. (Sensor_artefact_that_can_be_used_as_terrain_mapping_instrument

        \. (Satellite \. TerraSAR)   Drone (Radar \. InSAR) 

           (LIDAR \. Hokuyo_UTM-30LX_Scanning_Laser_Rangefinder_LIDAR) ).

Physical_property /^ Characteristic_or_dimension_or_measure,

  description: "e.g. one of the characteristics features of rigid bodies: inertia, mass, the respect of

      kinematics laws, any kind of friction, coefficients that describe the reaction to an impact, etc.".

Representation_of_the_environment_of_an_area  /^  Description_instrument-or-result-or-container,

  \. Representation_of_the_environment_of_a_disaster_area,

  description of: (Environment_situation /^ Situation,  \. Weather  Fire  Season,

                     attribute: Temperature  Humidity Magnetic_field  Pressure  Luminosity 

                                (Elevation \. Depth) ).

4. Conclusions
The  first  kinds  of  contributions  of  this  article  were  (i)  its  highlighting  of  the 

insufficiencies of restricted KS – thus, the waste of efforts and opportunities that not using 
general KS in order to support generals tasks such as risk/emergency management – and 
(ii) its panorama of complementary techniques that support general KS. Despite the fact 
that the problems related to traditional KR&S technologies are rather easy to be aware of 
when the goal is to perform general KS, this last goal is still original since (i) it requires 
efforts and training from knowledge providers (in exchange for less efforts and more 
results for knowledge consumers), (ii) developing and implementing techniques, tools 
and general ontologies for general KS is a difficult and very long work, and (iii) the focus 
of the research community is on quick and automated results since these ones are easier 
to publish, more granted or of more interest to the industry, and more incremental to 
develop and implement. Nowadays, most of general KS related research focus on the 
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content  of  foundational  or  lexical  ontologies.  Section  2.2  is  about  the  (manual) 
integration of such ontologies into a unique one, something far less researched. More 
generally,  the  four  subsections  of  Section  2  have  to  draw  on  techniques  previously 
developed by the first author for these subsections to present techniques that are both 
complementary and relevant for general KS. Although some new research elements have 
been included, the originality of the provided panorama is in the synthesis it makes: 
together, the described techniques provide a rather complete approach for supporting 
general KS efforts useful for risk/emergency management, while still allowing the reuse 
of  advances  in  the  well-researched  field  of  restricted  KS.  Together,  these  techniques 
answer the following research question: how to let Web users collaboratively build KBs 
(i) that are not implicitly “partially redundant or inconsistent” internally or with each other, 
(ii) that are complete with respect to particular subjects or criteria, (iii) without restricting 
what the users can enter nor forcing them to agree on terminology or beliefs, and (iv) 
without requiring people to duplicate knowledge in various KBs or to manually search 
knowledge in various KBs and aggregate knowledge from various KBs? Although our 
framework for these points is now well developed, much more is still (and will probably 
always have) to be developed or implemented, e.g., more features in FL and FE, more 
KRLs or equivalence rules between knowledge constructs represented in KRLO, more 
general ontologies integrated in the MSO as well as more representations of cooperation 
rules within or between shared KBs – rules for  the owners or users of  these KBs to 
choose from. However, at last, these extensions can now be made by these KB owners 
and users.

Via Section 3, the second part of this article, the second kinds of contributions of 
this  article  were  (i)  KRs  showing  how  complementary  kinds  of  risk/emergency 
management related information can be represented for general KS purposes, and (ii) 
highlights  of  the  interest  of  creating  or  reusing  such  KRs.  The  focused-on  example 
domains were (i) the UNDRR terminology, (ii) a general model to represent and organize 
Search&Rescue information, (iii) tasks or procedures for automatically exploring a disaster 
area,  and (iv)  research articles  about the use  of  a  simulation tool  for  creating rovers 
adapted to a terrain. The prototype rover designed using the above represented pieces of 
information [17] is also validating them. Even regarding this last point, more work will 
have to be performed via more extensive field testing.  More generally,  KRs will  also 
continue to be added to the MSO of the WebKB-2 server for supporting risk/emergency 
management  but,  since  this  is  a  huge domain,  the  additions will  understandably  be 
related to knowledge first needed by our own projects.

Regarding the most immediate planned extensions, WebKB-2 –  and especially its 
procedures  for  evaluating  or  preserving  the  KB  content  quality  and  general  KS 
supporting organization – will continue to be refined. These procedures allow their users 
to exploit the ontologies of their choices, and thus so far are generic: they have not yet  
proved to be domain sensitive, including in risk/emergency management.
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