
Article

General Knowledge Representation and Sharing,
with Illustrations in Risk/Emergency Management
Philippe A. Martin 1,* and Tullio J. Tanzi 2

1 EA2525 LIM, I.T. Department, University of La Réunion, 97400 Saint-Denis, France
2 LTCI, Télécom Paris, Institut Polytechnique de Paris, 91764 Palaiseau, France; tullio.tanzi@telecom-paris.fr
* Correspondence: philippe.martin@univ-reunion.fr

Abstract: Many decision-making tasks, including the sustainability-oriented ones and those
related to the management of risks or emergencies, must gather, integrate, and analyze an
important amount of information of various kinds and origins. Hence, how should information be
best organized and shared by agents – people or software – for all and only the pieces of
information looked for by these agents to maximize their retrieval, reuse, organization and analysis
by these agents? To that end, various logic-based knowledge representation (KR) and sharing (KS)
techniques, and hence KR bases, have been used. However, most KS researchers focus on what this
article defines as “restricted KR and KS”, where information providers and consumers can or have
to discuss for solving information ambiguities and other problems. The first part of this article
highlights the usefulness of “general KR and KS” and, for supporting them, provides a panorama of
complementary techniques, and hence, indirectly, best practices or kinds of tools to use for general
KS purposes. These techniques collectively answer research questions about how to support Web
users in the collaborative building of KR bases. The second part uses the risk/emergency
management domain to illustrate the ways different types of information can be represented to
support general KS.

Keywords: ontology sharing; knowledge sharing; knowledge representation; risk management

1. Introduction
Many tasks first require retrieving, comparing, aggregating and organizing an

important amount of information of many different kinds in order to make good and
timely decisions. This is the case of sustainability-oriented decisions, if only because they
have to balance economical, societal and environmental issues. This is also the case of
many tasks for the management of risks or emergencies. E.g., both Search&Rescue and
preemptively reducing disaster risks require access and use of many kinds of
information or other resources, such as particular kinds of persons, detection devices,
communication tools, maps, search methods and search software. These tasks also
depend on many parameters such as the nature of the emergency, the weather, the
terrain and the availability of the needed resources.

Ideally, to support such tasks and hence the findability, gathering, interoperability,
reusability, integration and analysis of information potentially useful to those tasks or to
the design of tools for those tasks, that information should be published, related and
organized on the Web in places and in ways that allow people and software agents to (i)
retrieve and compare information with respect to non-predefined sets of criteria, and (ii)
complement information while keeping them as organized and hence as retrievable.

As explained below, one requirement for such an ideal and scalable organization –
and thus a primary very general best practice for information dissemination and
collaboration between people, organizations or software – is to represent and organize
information either directly within knowledge representation bases (KR bases) or in ways that
can be automatically imported into KR bases (e.g. in documents and databases that have
been designed to allow such an importation). These KR bases can be either privately
developed or, preferably, collaboratively developed.

Sustainability 2023, 15, 10803. https://doi.org/10.3390/su151410803 www.mdpi.com/journal/sustainability

Citation: Martin, P.A.; Tanzi, T.J.;
General Knowledge Representation
and Sharing, with Illustrations in
Risk/Emergency Management.
Sustainability 2023, 15, 10803.
https://doi.org/10.3390/su151410803

Academic Editors: António Abreu,
Jie Jiang, Sisi Zlatanova, Edoardo A.
C. Costantini and Yasuhide Hobara

Received: 22 June 2022
Revised: 29 July 2022
Accepted: 5 August 2022
Published: 10 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license
(https://creativecommons.org/licen
ses/by/4.0/).

Sustainability 2023, 15, 10803 2 of 26

In this article, these KR bases are simply called KBs and, before going further, need
to be more introduced now. Such KBs do not store texts or other data; they store KRs (or
simply, “knowledge”), i.e. logic-based representations of semantic relations between
pieces of information – semantic relations being relations that can be represented in a logic-
based way. The boxes and figures in Section 2.1 and Section 3 include many examples. In
this article, the notions referred to by the words “knowledge” (KRs) and “data” are mutually
exclusive. “Data” refers to information not explicitly organized – or poorly organized – by
semantic relations, e.g. as in databases or XML documents: they are mainly organized by
predefined structural relations (i.e. partOf ones) and few semantic relations of very few
predefined types (mostly typeOf relations and sometimes subtype relations). In KBs, unlike
in relational databases, all the types (i.e. relation types and concept types) and their
definitions are user-provided (not predefined by the database designer); most of the
knowledge in many KBs are expressed via such definitions; large KBs such as CYC [1,2],
Freebase [3] and DBpedia [4] have hundreds of thousands of subtype relations. Document-
based technologies and database systems generally only handle data, although deductive
databases may be seen as steps towards KBs. A KB is composed of an ontology and,
generally, a base of facts. An ontology is (i) a formal terminology, i.e. a set of terms (alias,
object identifiers) used in the representations stored in the KB, along with (ii)
representations of term definitions, and thereby direct or indirect semantic relations
between these terms. Databases and natural-language-based documents cannot
automatically be converted into KBs that are well-organized via generalization and implication
relations, if only because these documents and bases most often lack the necessary
information to derive such relations (these relations are rarely made explicit by document
authors and even human readers often cannot infer such relations with certainty). These
relations – and thus, manually or semi-automatically built KBs – are necessary for the
support of (i) semantic-based searches, via queries or navigation, and (ii) any scalable way of
integrating or organizing information. This explains why architectures or methodologies
for building ontologies or systems exploiting them have already often been discussed
regarding disaster risk reduction or management. For example, in February 2022, the
digital library of the ISCRAM conferences (“Information Systems for Crisis Response and
Management” conferences) included 64 articles with main fields mentioning ontologies,
and 46 of these articles recorded “ontology” as a keyword.

Several small top-level ontologies related to disaster risk reduction or management,
e.g. the agent-oriented ontology of [5] for better indexing and retrieving “disaster
management plans” in document repositories for such plans, SEMA4A [6] which
supports alerting people about imminent disasters, empathi [7] which is more general and
integrates some other ontologies, and POLARISCO [8] which is a suite of ontologies
formalizing and relating the terminologies and methods of various emergency response
organizations (e.g. fire departments, police, and healthcare services). However, as of
2022, it seems there are no public large content ontology related to disaster risk reduction
or management, let alone KBs where people or organizations could relate or aggregate
information. As an example, even though [9] (which is also about disaster related
terminologies) mentions past “massive efforts e.g. in European projects such as
DISASTER (cordis.europa.eu/project/id/285069 (accessed on 7 August 2022)),
SecInCoRe (cni.etit.tu-dortmund.de/research/projects/secincore (accessed on 7 August
2022)), EPI (www.episecc.eu (accessed on 7 August 2022)), or CRISP
(cordis.europa.eu/project/id/607941/reporting/fr (accessed on 7 August 2022))”, the
results of those projects were not KBs but reports about then planned works as well as
advocated architectures or small models (top-level ontologies). There currently exist
some large projects, such as the Norwegian INSITU (Sharing Incident and Threat
Information for Common Situational Understanding) project (2019–2022) [10], which
focus on harmonizing terminologies or on tools for the collaborative synthesis of
information in classic media (databases, textual documents, maps, ...), not via KBs. The
use of classic media make the harmonization of terminologies useful for supporting
lexical searches (i.e. those proposed by current Web search engines and document
editors; these are not semantic search tools). However, such an harmonization is a
complex task which requires committees (hence an hierarchy-based decision-making
organization) and it is useful only when its guidelines are followed (something that is
not easy to do). Via KBs, harmonizing terminologies is not necessary since relations of
equivalence or generalization between terms within KBs or across KBs can be added in a
decentralized and incremental way by each provider of terms or knowledge. Tools that

Sustainability 2023, 15, 10803 3 of 26

exploit these particular relations can allow users and knowledge providers to choose the
terms they wish, without this decreasing knowledge retrievability.

This article distinguishes two meanings for “knowledge sharing” (KS). The one here
called “restricted KS” is closer to data(base) sharing: it is about (i) easing the exchange of
structured information (KRs or structured data) between particular agents (persons,
businesses or applications) that can discuss with each other to solve ambiguities or other
problems, and (ii) the complete or efficient exploitation of the information by these
particular agents, for particular applications. The other meaning, here called “general
KS”, is about people relating or representing information within or between KBs in ways
that maximize the retrievability and exploitation of the information by any person and
application. Examples of early landmark works related to general KS were Ontolingua
(server, ontologies and vision) [11] and the still on-going above-cited CYC project. These
two meanings are unfortunately very rarely distinguished, even indirectly, e.g. by the
World Wide Web Consortium (W3C). With respect to KS, the W3C has a “Semantic Web
vision” [12] of a “Web of Linked data” [13]. As the use of the word “data” may suggest,
and as explained in Section 2, the techniques and vision proposed for these Linked Data
are mainly focused on restricted KS. Indeed, the W3C had to focus on the basics and
convince industries of the interests of KBs over databases. However, after 1997 – the
beginning of the popularization of the W3C visions and languages – KS was mainly
learned about and operationalized via the W3C documents and languages, and thus
almost all research works in KS were implicitly in restricted KS. Among research articles
related to risk or emergency management and that advocate using KBs, most rely on the
W3C techniques or approach – e.g. the articles of [14] (about ontology-supported rule-
based reasoning), of [15] (about ontology-supported access to particular databases) and
of [16] (about a small ontology mainly including 38 concept types and 21 subtype relations,
about some crisis management procedures). Previous studies into risk/emergency
management have not addressed general KS in these domains and are insufficient to
address the distributed and large number of potentially useful sources of information for
such a management. This insufficiency is also one reason for the above-cited lack of large
publicly accessible content ontologies or KBs related to disaster management.

When applied to programming – or, more generally, knowledge modeling and
exploiting processes or techniques as well as rules or constraints (or data structures for them) –
restricted KS means representing them (i) in a KB directly usable by a KR-based software for
a particular application, or (ii) in a KB from which a particular program can be manually
or semi-automatically generated (this is model-based design/programming). With general
KS, these process-related resources are represented and organized into an ontology
where general logical specifications are incrementally (and cooperatively) specialized by
more and more precise or restricted specifications, according to selected paradigms (e.g.
logical, purely functional and state-based) and their associated primitives from particular
logics and languages. Since these primitives can be defined or declared in an ontology, this
one can store and organize representations that are directly translatable in particular
formal languages such as programming languages. Thus, if software components are
stored in the lower levels of such an ontology, this one may also be used as a scalable
library of software components in various languages. Via the systematic use of
specialization relations and the explicit representation of any implementation choices,
general KS allows the representation of specifications that are language dependent or
application dependent while still maximizing knowledge reuse and thus allowing
knowledge users (not just knowledge providers) to make such choices.

Knowledge representation and sharing (KR&S) – or, a fortiori, general KS – and the
exploitation of its results has various advantages for risk/emergency management.
Before an emergency occurs, i.e. in the anticipation phase, KR&S helps finding,
organizing and analyzing resources (e.g. information for/on risk/emergency
management techniques), designing tools (e.g. KB-based or not software and disaster
area exploration robots) and testing them (e.g. via simulations). During an emergency,
KR&S helps finding and coordinating resources (e.g. information and people). After an
emergency, KR&S helps in organizing and analyzing data collected during the
emergency (e.g. data collected by the robots) and exploits it for validating or refining
hypothesis, techniques, simulation data and tools, thus for generating new knowledge.
All these “KR&S helps or supports for risk/emergency management” derive from the
knowledge integration and inferences they permit, compared to data-based technologies.
Thus, in that respect, the helps and supports provided by KR&S technologies (such as
those of data-based technologies) are not dependent on the context, e.g., earthquakes,

Sustainability 2023, 15, 10803 4 of 26

fires, floods, volcanic eruptions, etc. What changes depending on the context or domain
is the knowledge that is represented, searched, retrieved and exploited, as well as
particular features required for that, such as particular kinds of KR construct, logic or
expressiveness, e.g. for spatial, temporal or probabilistic KR. The provided KR&S helps
are better with general KS – hence with the techniques provided in this article – than
with restricted KS since general KS (i) supports a better integration of knowledge by
more people, hence more knowledge sources, and (ii) supports each knowledge provider,
consumer or application in selecting, extending or creating the above-cited particular
features they require. Finally, regarding the context independence of the panorama of
techniques provided in this article, it should also be noted that these techniques were
developed by the first author due to some clear insufficiencies of existing KR&S
technologies for general KS, in any domain. The next paragraph lists these insufficiencies.

Representing rules or filling data acquiring forms for a particular application – or
building a tool to support this – is different to representing knowledge for general KS
purposes – or building a tool to support this, e.g. for allowing experts or companies in a
particular domain to represent (in a shared KB) the products, services or knowledge they
can provide, or for allowing researchers, lecturers and engineers to represent and
integrate their knowledge in this shared KB for pedagogical or cooperation purposes.
When representing knowledge for general KS purpose, some technological gaps in
existing KR&S technologies often become apparent. First, starting from the most
immediately apparent: reusing an existing large shared lexical ontology is necessary
since otherwise every knowledge contributor would have (i) to define each term (word
sense) and its generalizations, and (ii) relate each of them to each other term of each
other contributor; in other words, they would each have to spend months or years
creating and relating their own large shared lexical ontologies. Second, extending the
used KR language appears useful because it is almost never expressive or concise enough
to allow entering all the particular required knowledge for the particular domain to
represent. Third, for representing such an amount of complex knowledge, textual KR
languages are much easier to use than graphical interfaces, in the same way that, for
medium-to-large programs, textual programming languages are easier to use than
graphical ones. Fourth, the used KR languages allows many ways to represent equivalent
knowledge but the associated inference engines are not able to find the results
equivalent. Fifth, separately-built KBs – hence poorly related KBs that are often
inconsistent and implicitly redundant with each other – are not exploitable for general
KS: they do not contain enough information for an inference engine to integrate them
reliably (analogously, a person cannot integrate texts written in a language he does not
understand). Thus, general KS requires shared KBs with a KB editing protocols that (i)
ensures that enough information is provided to reach and maintain a particular minimal
organization in each shared KB, and (ii) does not restrict the knowledge the users want
to enter in a KB as long as it is within the scope of this KB. Sixth, in addition to this
inner-KB KS protocol, there is a need for inter-KB KS protocols since no single individual
shared KB can host and efficiently manage all knowledge in all domains, or have a KB
editing protocol that satisfy all knowledge contributors. Although identifying these
problems is not too difficult when representing knowledge for general KS purpose,
research avenues for solving them were original and ambitious: the work of developing
and implementing all the underlying techniques, tools and general ontologies is difficult
and very long. Section 2 introduces complementary techniques for supporting general
KS – and hence the ideal described in the second paragraph of this introduction – via
four subsections, one for each of the following four complementary topics of such a
support: KR language instruments, KR content instruments (reusable ontologies; this is
the topics on which most general KS related research focus), inner-KB content
organization, inter-KB content organization. While doing so, Section 2 also gives (i)
various rationale for the above-cited insufficiencies of classic techniques, and (ii) the
constraints (or most important features to support) that explain why the provided
solutions are proposed as answers to these insufficiencies. The originality of Section 2 is
in the panorama or synthesis itself, rather than in the depth of the description of the
introduced or cited techniques, since the first author has previously published on several
of these techniques but separately, not together. However, in Section 2 some new
elements are also introduced. Furthermore, the panorama shows that it is only together
that these complementary techniques support general KS by collectively answering the
following research question: how to allow Web users to collaboratively build KBs where
pieces of information (i) are not implicitly “partially redundant or inconsistent”, neither

Sustainability 2023, 15, 10803 5 of 26

internally nor with each other, (ii) are complete w.r.t. particular criteria and subjects
selected by the KB creators, (iii) do not restrict the knowledge that people can provide
nor force them to agree on beliefs or terminology, (iv) do not lead knowledge providers
to duplicate information in various KBs, and (v) do not require people to search
information in several KBs nor aggregate information from several KBs?

Via several examples, Section 3, the second part of this article, shows how various
kinds of information useful for risk/emergency management can be represented or
categorized for the purpose of general KS. Section 3.1 illustrates how organizing and
representing a small terminology, and why performing such tasks is important. Section
3.2 provides a general model for organizing and representing Search&Rescue information;
the logic-based representation of procedures and other description objects is illustrated
and is original for such tasks. Section 3.3 shows KRs for an automatic systematic
exploration of a disaster area, e.g. by a rover (in this article, “rover” refers to an
autonomous small vehicle such as those used for planetary surface exploration); the
illustrated originality in Section 3.3 is the representation of procedures. Section 3.4
represents information about ways to design rovers that are adapted to a terrain; the
illustrated originality is in showing how all the important information from three
different research articles are synthesized, related and organized. The contents of all
these KRs (models, procedures, techniques, …) and their use for designing the intended
rovers are themselves validated by the designed prototype rover and its capabilities [17].

2. Four Complementary Avenues for Supporting General Knowledge Sharing
2.1. Tools to Import/Export Any Kind of Knowledge, Even in User Specified Formal Languages

Knowledge representations (KRs) are logic statements. From a graph-oriented
viewpoint, KRs are concept nodes (i.e. concept type instances, quantified or not)
connected or connectable by relation nodes (or, more shortly, “relations”: existentially
quantified instances of relation types). KRs are expressed in formal languages: KR
languages (KRLs). In this article, a KB is a set of objects that are either types (objects that
can have instances) or non-type objects. Statements (KRs) are non-type objects. Types are
either concept types or relation types. In this article, a “term” is an object identifier that
does not solely come from the used KRL, i.e. that is not solely predefined. A term is
defined or declared in an ontology. A KB is only an ontology if it has no base of facts, hence
if all its statements are definitions. Box 1, Box 2 and Section 3 give KR examples. Box 3
illustrates simple semantic queries on KRs.

Sustainability 2023, 15, 10803 6 of 26

Box 1. Some equivalent formal representations of a very simple statement (in the names of the
given KRLs, “/” separates the used “logic/abstract model(s)” part from the used “concrete syntax
model” part, and means that the first one is linearized with the second one).

English: By definition, a flying_bird_with_2_wings is a bird that flies and has two wings.

PL (Predicate logic; here, more precisely, “First-order_logic / Modern_variant_of_the_Peano-Russel_notation”):
 Flying_bird_with_2_wings (b) := Bird(b) ∧ ∃f Flight(f) ∧ agent(f,b) ∧

 ∃w1,w2 Wing(w1) Wing(w2) ∧ ∧ part(b,w1) ∧ part(b,w2) w1∧ !=w2

 Notes: an “agent” relation links a process to its “do-er” hence, in natural language grammars, to its “subject”;
 in the KRs of Section 2, italics are used for relation types and only for these terms;
 fully understanding these representations is here not required: they are only intended as examples.

First-order_logic / Prefixed-KIF (note: KIF represents concept types as unary relation types):”):
 (defrelation Flying_bird_with_2_wings (?b) := (exists ((?f Flight) (?w1 Wing) (?w2 Wing))

 (and (Bird ?b) (agent ?f ?b) (part ?b ?w1) (part ?b ?w2) (/= ?w1 ?w2))))

FE (Formalized-English; here, more precisely, “First-order_logic / FE_notation”):
 any Flying_bird_with_2_wings is a Bird that is agent of a Flight and has for part 2 Wing.

FL (here, more precisely, “First-order_logic / FL_notation”):
 Flying_bird_with_2_wings = ^(Bird agent of: a Flight, part: 2 Wing).

RDF+OWL2 / Turtle (a language advocated by the W3C and commonly used for Linked Data):
 :Flying_bird_with_2_wings owl:intersectionOf

 (:Bird [a owl:Restriction; owl:onProperty :agent; owl:someValuesFrom :Flight]

 [a owl:Restriction; owl:onProperty :wingPart; owl:qualifiedCardinality 2]).

UML (here, more precisely, “UML_model / UML_concise_notation”):
Legend for this graphic notation:

- each arrow “->” represents a supertype (sublassOf) link

- for other links, the arrow “→” is used with an associated
 link type and also a destination cardinality when this
 cardinality is different from 0..*, i.e. 0–N

- in the used concise notation, boxes around classes (types)
 and associations (links) are not drawn.

Sustainability 2023, 15, 10803 7 of 26

Box 2. Some equivalent formal representations of a more complex statement, one that cannot be
represented in first-order logic (and, a fortiori, in RDF+OWL2; for the representation with the
Turtle notation, the IKLmE logic and structural model is used).

English: On March 21st 2016, John Doe believed that in 2015 and in the USA,
 at least 78% of adult healthy carinate birds were able to fly.

FE: ` ` ` ` `at least 78% of Adult Healthy Carinate_bird is able to be agent of: a Flight´
 at place USA´ at time 2015´ for believer John_Doe´ at time 2016-03-21´.

FL: [[[[[at least 78% of Adult Healthy Carinate_bird is able to be agent of: a Flight]
 place: USA] time: 2015] believer: John_Doe] time: 2016-03-21].

IKLmE / Turtle: [rdf:value
 [rdf:value

 [rdf:value

 [rdf:value

 [rdf:value [rdf:value [:agent_of [a :Flight]

]; pm:q_ctxt [quantifier "78to100pc";

 rdf:type :Adult, :Healthy,

 :Carinate_bird]

]; pm:ctxt [:modality :Physical_possibility]

]; pm:ctxt [:place :USA]

]; pm:ctxt [:time "2015"]

]; pm:ctxt [:believer :John_Doe]

]; pm:ctxt [:time 2016-03-21]].

Box 3. Some equivalent formal representations of two semantic queries on a KB.

English: In this KB, what “minimal graph” implies that some/all birds have or may have 2 wings ?
 (notes: “minimal graph” here means that the shorter-but-still-correct answer, the better;
 otherwise, if there is an answer, the whole KB would also be an answer;
 in FL an FE, the query operator “?” is used for retrieving such graphs in a KB;
 the statement represented in Box 1 is one answer to this query)

FE: Is there a statement ?s that has for implication `a Bird may have for part 2 Wings' ?

FL: ?s [?s => [a Bird part: 2 Wing]]

SPARQL (a query language advocated by the W3C; since, SPARQL is not able to represent the above query,
 the statement represented in Box 1 is one answer to this query):
 CONSTRUCT { ?b ?rPart ?w } WHERE { ?b rdf:type Bird . ?w rdf:type Wing .

 ?rPart rdfs:subPropertyOf* :part . ?b ?rPart ?w }

English: Which birds in this KB are described as having 2 wings ?

FE: ? ?b `a Bird ?b that has for part 2 Wing'

FL: ? ?b [a Bird ?b part: 2 Wing]

SPARQL: SELECT ?b WHERE { ?b rdf:type Bird . ?w rdf:type Wing .
 ?rPart rdfs:subPropertyOf* :part . ?b ?rPart ?w }

When it comes to KR languages (KRLs), the W3C first proposes a few ontologies for
“KRL models”, i.e. logic and structural models, e.g. RDF for representing very simple logic
formulas (existentially quantified conjunctive formulas), OWL2 for the use of the SROIQ
description logic and RIF for representing rules of more expressive classic logics. The
W3C also proposes some notations, i.e. concrete syntax models, for the previous KRL models,
e.g. the notations named RDF/XML, RDF/Turtle and RIF/XML. Box 1 illustrates
RDF/Turtle and the meaning of “/” in these names. There exists other standards for
other KR logic models, e.g. the model of KIF (the ANSI “Knowledge Interchange
Format”) and Common-Logic (CL, the ISO/IEC model for first-order logic), with various
notations for them, e.g. Prefixed-KIF, Infix-KIF and XCL (“XML for CL”). However, as
described by the next two paragraphs, the current standard or common KRLs have at
least two problems for general KS, e.g. for risk/emergency management.

Sustainability 2023, 15, 10803 8 of 26

The first drawback of these KRLs is their expressiveness restrictions. Although these
restrictions ensure that what is represented via these KRLs has some interesting
properties (e.g. efficiency properties), these restrictions prevent the representation of
some useful information: some KRs cannot be formally written. Then, these KRs cannot
be shared, and this also often leads to the writing of KRs in ad hoc, imprecise or biased
ways, hence in incorrect or far less exploitable ways. Conversely, for general KS, enabling
people to write expressive KRs has often no downside since, when needed and
whichever their expressiveness, KRs can be translated into less expressive ones. This can
often be completed automatically, to fit the need of a particular application, by discarding
the kind of information that this application cannot handle or does not require. Since
such choices are application dependent, the knowledge users should make them, not the
knowledge providers. KRs designed for particular applications are often unfit (too
biased or restricted, ...) for other applications. As mentioned in other words within the
introduction, in general KS, knowledge providers do not make application-dependent
choices – or only as additional specializations, hence without restricting the possibilities
of knowledge users. Since current or future risk/emergency management cannot be
reduced to a list of particular applications, it is limited by expressiveness restrictions.

A second important drawback of these KRLs is that they are not “high-level”,
meaning that they are not supporting or leading to “normalized and easy to read or
write” representations of many important notions such as numerical quantifiers, meta-
statements, and interpretations of relations from collections. Hence, even when similar
pieces of information are represented, if different KRLs or different knowledge providers are
involved, the results are generally so different that matching them to each other is
difficult to do automatically, and hence so is searching or aggregating them. Using
ontology design patterns – such as those of [18] – is difficult and only very partially
addresses these issues; thus, it is rarely performed. In addition, for different domains or
applications, it is often useful to use different notions and different ways to represent
information. Viewing – and, a fortiori, writing – KRs via current KR editors is even more
restricting in terms of what can be displayed and expressed. E.g., graphics take a lot of
space and thus do not allow people to simultaneously see and hence visually compare
many KRs (this is a problematic for KR understanding and browsing).

A first answer to these problems was (i) FL [19], a KRL that has a very expressive,
concise and configurable textual notation, and (ii) FE [20], an English-looking version of
FL which can more easily be read by people with only a small training in KR. Like FL, FE
can use an ontology even for logic-related terms such as quantifiers and hence can be a
notation for any logic, unlike the other logic-based controlled languages, e.g. “Attempto
Controlled English” and “Common Logic Controlled English”. Box 1 and Box 2 illustrate
the expressiveness and high-levelness of FL and FE compared to some classic KRLs. The
English statement in Box 2 could have been represented in KIF (since it has a second-
order logic notation interpreted into a first-order logic model) but in a less readable and
normalizing way.

A more general and complementary answer is the design of an ontology of (i) model
components for logics, and (ii) notation components for these models. KRLO (KRL ontology)
[21] is a core for such an ontology: it supports the definition of KRL languages (and
actually most formal languages). Furthermore, it is stored in a cooperatively-built shared
KB (details in Section 2.3), that allow Web users to extend KRLO and store the definitions
of new KRLs. A library of software components exploiting such an ontology is currently
being created. Via these components or modules, KB systems will be able to
import/export from/to/between any such specified KR languages, and thus also
perform particular kinds of KR translations (in addition, since the rules for such
translations are also specified in the ontology, tool users will not only be able to select the
rules that they want to be applied but also complement these rules). [22] criticized KIF,
and other would-be KRL interoperability standards, for necessarily packaging only a
particular set of logic primitives and hence not actually supporting interoperability if the
primitives of any logic cannot be defined with respect to each other with that KRL. The
use of KRLO and translation-procedures-based on it is a solution to this problem and
can be seen as a way to have the interoperability advantage of standards without their
expressiveness and notational restrictions. [21] also shows how common notations such
as Turtle or JSON-LD can be used for representing meta-statements and many kinds of
quantifiers, albeit in a yet non-standard way. Box 2 illustrates this with Turtle and
IKLmE, a model that is part of KRLO and that represents the concept and relation types
of IKL [23], a first-order logic model that is an extension or variant of CL and KIF for

Sustainability 2023, 15, 10803 9 of 26

interoperability purposes. Some other research projects had or have some similarities
with the KRLO project but do not share the goal of supporting one shared ontology for
any number of KRLs. Furthermore, KRLO is cooperatively extendable by Web users, as
detailed in subsequent subsections, for general KS purposes as well as general
translation purposes between KRLs. No other project related to KRL ontologies had the
same goal as the KRLO project. The LATIN (Logic Atlas and Integrator) Project (2009 –
2012) [24] represented translation relations between many particular logics. Ontohub [25]
is (i) a repository that included some KRL model representations and some translation
relations between them, and (ii) an inference engine able to integrate ontologies based on
different logics. ODM 1.1 [26] is an ontology that relates some elements of some KRL
models, mainly RDF, OWL, CL and Topic Maps.

2.2. General Purpose Ontologies Merging Top Level Ontologies and Lexical Ones
Foundational ontologies or, more generally, top-level ontologies define types that support

and guide the checking, organization and representation of the ontologies they are
included in. Two examples of well-known general foundational ontologies are DOLCE
[27] and BFO [28]. The previously cited POLARISCO [8] relies on BFO for better
formalizing and relating the terminologies and methods of various emergency response
organizations.

Strictly speaking, lexical ontologies – e.g. ConceptNet 5.5 [29] – organize and partially
define various meanings of words from natural languages and relate these words to these
meanings. However, in this article, the expression “lexical ontologies” also refers to
“large mappings between general KBs”, e.g. the lexical ontology of UMBEL (now retired
but included into KBpedia [30]) which had more than 35,000 types and 65,000 formal
mappings between categories from (for example) OpenCyc, YAGO, DBpedia, GeoNames
and schema.org.

Both kinds of ontologies – top-level ones and lexical ones – are domain-
independent, thus usable in risk/emergency management. The more a KB reuse types
from such ontologies, the easier it is for people to create, update or organize this KB and
the more any of its content can be retrieved using these types. Similarly, the more types
two KBs share and are based on (hence, especially types from such ontologies), the easier
the content from these two KBs can be aligned or fully integrated. Below, the word “merge”
is used for referring to any of these two processes. Since such ontologies are sets of
definitions, as opposed to assertions of facts or beliefs, inconsistencies between these
ontologies are telltales of conceptual mistakes, such as over-restrictions or
misinterpretations. Thus, for the parts these ontologies are not redundant with one
another, such ontologies complement each other and, possibly after some making some
corrections, can be merged without this leading to inconsistencies.

The Multi-Source Ontology (MSO) [31] is a step towards such a merged ontology.
The MSO already merges several top-level ontologies as well as a lexical ontology derived
from WordNet [32]. It will be complemented with other top-level ontologies, typically
those from other merges included in large general ontologies such as YAGO and DBpedia.
However, unlike for other merges, the ones in the MSO follow the general KS supporting
methods described in the next subsection. Here are examples of what this entails.
 The MSO is in a cooperatively-built shared KB where it can be improved and

complemented by Web users.
 Modifications in such a KB are, whenever needed, “additive”, as opposed to

“destructive”, since (i) a modification can be made by adding a relation that states
how a newly entered KR corrects another KR, (ii) KRs are represented as viewpoints,
preferences or beliefs from particular knowledge providers, and (iii) particular relations
must be entered between opposing beliefs for them to be later automatically
managed according to the wishes of each user. The next sub-section explains how.
The other KS approaches are essentially based on helping the creation, handling,
retrieval and aggregation of (possibly competing) ontology modules – e.g. see [33] – and
versions (for KBs, hence for ontology modules too) – e.g. see [34]. Modules and
versions are relation sets which may be “partially redundant and inconsistent” with
each other, i.e., which may be competing. Thus, when creating a KB, such sets often
require choices by ontology designers or users for selecting one or another. Using
different modules or versions lead to different KBs, thus increasing the list that
some knowledge users have to choose from and sometimes integrate. With the
approach used in the MSO, additions do not require choices between relations and
particular modules or versions can still be extracted using semantic queries.

Sustainability 2023, 15, 10803 10 of 26

 In accordance with the previous point, when an ontology is merged into the MSO,
its content does not need to – and is not – destructively modified to fix conflicts with
other ontologies. Thus, no arbitrary choice has to be made and this eases the
integration of later versions of these integrated ontologies.

 The MSO has a top-level organized by subtype partitions, and thus has advantages
similar to those of a decision tree for knowledge inference and retrieval purposes.
This organization is kept when new KRs are added into the above-cited kind of
“additive but consistent” shared KBs.
In addition to a lexical ontology and top-level ontologies, the MSO includes KRLO

and hence types interesting for categorizing or representing software or procedures.
Section 3.2 shows how this last point is useful for risk/emergency management too.

2.3. KB Servers That Support Non-Restricting KB Sharing by Web Users
A user of a shared KB may want to complement it with a statement that contradict

another knowledge provider’s statement already in this KB. However, for general KS
purpose, a KB should not include two statements that are logically inconsistent with one
another, since classic logics – and therefore most inference engines – cannot handle KBs
that are logically inconsistent (in other words, most KB management systems are not
based on a paraconsistent logical system or a similar approach). Similarly, for general KS
purpose, avoiding inconsistencies in a shared KB cannot be achieved by having a person
or a committee decide to accept or not each new statement that is submitted to the KB.
Indeed, this process is too slow to be scalable and it is important for general KS to
preserve the possibilities for knowledge end-users to make selections themselves
according to their particular needs. Similarly, general KS cannot use solutions based on
selecting only consensual KRs or only KRs from a largest consistent subset of the KB.
Using a software to dispatch the submitted statements into different KBs (depending on
various criteria) for each resulting KB to be internally consistent, e.g. as in the Co4
protocol for building consensual KBs [35], is also not a scalable solution: with such a
method, the number of required KBs can grow exponentially and these KBs may be
mostly redundant with one another.

Solutions start by associating each term (alias, identifier within the KB) and statement to
its source (its author or, if unknown, the source document). This is already a standard
practice when it comes to terms (alias, object identifiers), e.g., the systematic use of URLs
(with or without abbreviations) is advocated by the W3C. Regarding statements, making
this association is to acknowledge that the statements which are usually called facts in
KBs are actually beliefs: the associations between them and their sources become the
actual facts. This association may be made via meta-statements that contextualize other
statements to represent who created these last ones or believe in them. (Unfortunately, as
of 2022, the W3C has not yet made recommendations regarding ways to represent
contextualizations and OWL does not support the representation of meta-statements).
More generally, in KBs that include such beliefs, the statements provided by users can be
categorized as being either “beliefs” or “definitions”. These last ones are always “true, by
definition” since the meaning of the term they define is whatever its definitions specify
(thus, if a definition of a term is inconsistent, this term means “something impossible”). For
example, assuming that pm is an identifier for a particular user in a KB, then pm is entitled
to create the term “pm:Table” (this identifier uses the term-prefixing syntax allowed by
most KRLs advocated by the W3C) and to define it as a type for flying objects rather than
as a type for some kinds of furniture. Thus, definitions do not need to be contextualized
like beliefs are.

Thus, to avoid direct inconsistencies between statements from different contributors
(knowledge providers), a shared KB may have an editing protocol that leads to the
entering of beliefs instead of facts. When a contributor C is about to add a belief that the
inference engine detects as being in conflict or partially redundant with another
contributor’s belief already in the KB, the protocol may ask C to relate the two beliefs for
(i) representing why this addition is necessary (this is also a way to make C realize that
the addition is not necessary or has to be refined), and then (ii) let the inference engine
exploit such relations between conflicting beliefs for making choices between them when
such a choice is required. For example, if the statements “according to user X, birds fly”
and “according to user Y, healthy adult carinate birds can fly”, then a relation must be
added between these statements to state whether the second statement is a correction (by
Y) of the first statement, or whether the first statement is a correction (by X) of the second
statement. Such a relation can then be exploited (according to application requirements

Sustainability 2023, 15, 10803 11 of 26

or the preferences of the current user) for automatically or manually selecting which
statement should be exploited by the used inference engine for the cases when this
engine must choose between the two statements. If the purpose is simply to retrieve
knowledge, this choice may not be needed since, when two statements are potential
answers to a query, a good and informative result may simply be to return both of them
connected by the relevant corrective relation. One particular rule for an automatic
exploitation strategy may be a specification of the following informal rule: “when a choice
between conflicting statements from trustable authors is needed, select the most corrected
statements according to their inter-relations and then, if conflicts remain, generate all
maximal sets of non-conflicting statements and give the results of the inferences made
with each set”. Different users may refine or complement this rule in many ways.

The shared KB editing protocol of the WebKB-2 server [36] implements and actually
adds some precision to this general approach. This protocol uses the addition of
particular relations to the KB not only to be able to manage KB sharing conflicts but also
modifications to the KB: modifications are additive, not destructive. For example, when
objects (relations or terms) are made obsolete by their creators but are still used by other
agents, these objects are not fully removed but contextualized in a way indicating (i)
regarding terms, who their new owners are, and (ii) regarding relations, who do not
believe in them anymore. Regarding the addition of a belief that the inference engine
detects as being in conflict or partially redundant with already stored ones, the main
principle of this protocol is to ask the author of the belief to connect it to each of these
particular other stored ones via a relation of a type derived from each of the following ones:
“pm:correction”, “pm:logical_implication” (alias, “=>”) and “pm:generalization” (not all
logical implications are generalizations). Here, “derived” means either “identical”,
“inverse”, “exclusive with”, “subtype of”, “subtype of the inverse”, or “subtype of a type
exclusive with”. E.g., “pm:non-corrective_specialization_only” is defined as a subtype of
the inverse of “pm:generalization” as well as an exclusion to both “pm:correction” and “=>”.
Thus, all potentially conflicting or redundant statements are (directly or transitively)
connected via these relations. This organization has many advantages for inferences,
quality evaluations and checks of the KB, e.g. statements can be searched for via their
exclusion to some other ones. Even more importantly for general KS, this organization
supports automatic choices between conflicting statements via rules such as the one
given in the previous paragraph.

Since knowledge providers can specify the above-cited relations even when an
inference engine is not able to detect potential conflicts or implicit redundancies,
knowledge providers can also specify such relations between informal statements within
a KB or a semantic wiki. Thus, the above-described approach can also be used for
organizing the content of a semantic wiki and thus avoiding or solving edit wars in it. To
sum up, the approach described in the previous paragraph works with any kind of
information, does not arbitrarily constrain what people can store or represent, and keeps
the KB organized, at least insofar as people or the used inference engine can detect
redundancies or inconsistencies. In a fully formal KB, many implications have to be
provided by knowledge providers (e.g., these implications may be rules these persons
believe to be true) but generalization relations between statements can be automatically
generated, e.g. for inference efficiency purposes. To obtain or keep a partially informal
shared KB organized, and hence better exploit it for inferences and cooperation purposes,
the more this KB uses some informal terms in its statements, the more it is useful to also
ask the knowledge providers to specify generalization relations between statements.

2.4. KB Servers That Support Networked KBs
As hinted in the introduction (first paragraph), there is a huge amount of

information that can be valuable for a domain such as risk/emergency management (and
the information can also be used for many other purposes). All the information cannot
be stored into a single individual KB (alias, physical KB). An individual KB is a KB having
one associated KB server that stores this KB and manages query/update accesses to it –
one server or, for security purposes, a set of equivalent ones. As opposed to such a KB, a
networked KB (alias, virtual KB) is composed of a network of individual KBs where the KB
servers exchange information or forward queries among themselves.

The W3C has not made recommendations about networked KBs, it only advised KB
authors to relate the terms of their KBs to terms of some other KBs. This advice tries to
reduce the problems coming from the fact that most KBs are developed independently
from one another, and hence are just structured data for one another since their ontologies

Sustainability 2023, 15, 10803 12 of 26

are not related or poorly related. However, this strategy for partially independent
development of KBs only very partially solves the above referred problems: the more
knowledge is added to such KBs, (i) the more inconsistencies and implicit redundancies
they have between them, i.e. together, (ii) the harder it then is to align or integrate them,
and (iii) each user wanting to reuse such KBs has to (re-)do such an integration work.
Although there are numerous approaches for partially automatizing such a work or
aspects of it, as for example recently summarized by [37], their success rates are
necessarily limited: correctly and fully integrating two (partially-)independently
developped ontologies requires understanding the meaning of each object in these
ontology and hence, most often, finding information that is not represented in them.

Thus, for reasons similar to those given in the previous (sub-)sections, requirements
for a networked KB to be scalable and interesting for general KS purposes are: (i) its overall
content, i.e. the sum of its component KBs, should be as organized as if it was stored into
one individual shared KB with the properties described in the previous subsection, (ii)
neither the repartition of the KRs among the KBs, nor the process of adding an
individual KB to a networked KB, should depend on a central authority (automated or
not), and (iii) no user of the networked KB should have to know which component
individual KB(s) to query or add to. Thus, ideally, for general KS on the Web, (i) there would
exist at least one networked KB organizing all KRs on the Web, and (ii) additions or
queries to one KB server would be automatically forwarded to the relevant KB servers.

These constraints are not satisfied by networked KBs based on distributed or federated
database systems. Indeed, in these systems, the protocols that distribute or exchange
information and forward queries exploit the fact that each individual KB or database has
a fixed database schema or ontology, i.e. one that is not modified by its end-users (e.g.
data providers). On the other hand, in general KS, the ontologies of the individual KBs
are often updated by their contributors. Many networked KB architectures exploit such
database systems, including the architectures advocated in risk/emergency management
related articles, e.g. those of [15].

Similarly, these constraints are not satisfied by networked KBs based on peer-to-peer
(P2P) protocols or multi-agent system (MAS) protocols. Indeed, for exploiting the KRs
within these KB – e.g., for the distribution, indexation or exchange of knowledge – these
protocols also have to rely on some fixed and/or centralized ontologies (and/or use
knowledge similarity measures or automatic ontology integration techniques when these
approach are sufficient for the intended task or domains; these measures or techniques
may be provided by the individual servers, peers or agents). These fixed ontologies may
be stored within the individual servers, software agents or peers – or sometimes even the
P2P routing table, as described by [38]. They may also be external to them, with more
structured networks (e.g. the use of super peers) or centralized solutions, for instance as
described by [39–41].

For satisfying the above-cited constraints, the solution proposed in [19] by the first
author of this present article is based on the notions of “(individual KB) scope” and
“nexus for a scope”. The rest of this section presents the underlying ideas of a recent
extension this solution by the first author. An intensional scope is a KR specifying the
kinds of objects (terms and KRs) that a shared individual KB server is committed to
accept from Web users. This scope is chosen by the owner(s) of this shared individual
KB. An intensional core scope is the part of an intensional scope that specifies the kinds of
objects that the server is committed to accept even if, for each of these kinds of objects,
another intensional core scope on the Web also includes this kind of objects (i.e. if at least
another server has made the same storage commitment for this kind of objects). An
extensional scope is a structured textual Web document that lists each formal term (of the
ontology of the individual KB) that uses a normalized expression of the form “<formal-
term-main-identifier>__scope <URL_of_the_KB>”. Since extensional scopes are Web
documents, such a format enables KB servers to exploit Google-like search engines for
retrieving the addresses of KBs storing a particular term. A (scope) nexus is a KB server
that has publicly published its intensional and extensional scopes on the Web, and has
also specified within its non-core intensional scope that it is committed to accept storing the
following kinds of terms and KRs whenever they do not fall in the scope of another existing nexus :
(i) the subtypes, supertypes, types, instances of each type covered by the selected
intensional scope, and (ii) the direct relations from each of these last objects (that are
stored in this KB only as long as no other nexus stores them). (The WebKB-2 server that
hosts the MSO is a nexus that has at least the MSO as intensional scope. Thus, this server
can be used by any networked KB as one possible nexus for non-domain specific terms

Sustainability 2023, 15, 10803 13 of 26

and KRs.) Then, “an individual KB (server) joining a networked KB” simply means that
the KB server is being committed not only to be a nexus for its intensional scope but also
to perform the following tasks whenever a command (query or update) is submitted to the
KB server:
 The first task is, insofar as the intensional scope allows it, to handle this command

internally via the KB sharing protocol of WebKB-2 or another protocol with similar
or better properties.

 The second task is to forward this command to the KB servers which, given their
scopes, may handle it, at least partly. These servers are retrieved via their published
extensional scopes.
Thus, thanks to this propagation, each command is forwarded to all nexus that can handle it,

and no KB server has to store all the terms of all the KBs, even for interpreting the published
scopes of other nexus. To counterbalance the fact that some forwardings of KRs may not
be correctly performed or may be lost due to network errors, i.e. to counterbalance the
fact that this “push-based strategy” may not always work, each KB server may also
search other nexus having scopes overlapping its own scopes and then import some KRs
from these nexus: this is the complementary “pull-based strategy”. KB servers that have
overlapping scopes may have overlapping content but this redundancy is not implicit
and hence, as explained in the previous subsection, not harmful for general KS purposes.

To sum up, Section 2.4 showed how some inter-KB organization(s) can replicate an
inner-KB organization that has advantages and supports that are described in Section 2.3
and Section 2.2, which themselves are made possible via the language-related techniques
introduced in Section 2.1. Section 3 illustrates some applications of some ideas from
Section 2.1 and Section 2.2 for some knowledge useful in risk/emergency management.

3. Examples of Representations for General Knowledge Sharing
In the present section, for clarity and concision purposes, the FL notation [19] is

used rather than a W3C KRL notation. Thus, for identifiers, the namespace end delimiter
is “#” (as in pm:Table) instead of “:” in W3C KRL notations (as in pm:Table); indeed, in FL
“:” is the end delimiter for relation nodes, as in most frame-based KRLs.

3.1. Organization of a Small Terminology about Disaster Risk Reduction
In 2017, the United Nations office for Disaster Risk Reduction (UNDRR) has defined

a “terminology about disaster risk reduction [42]”. It is here now referred to as
“UndrrT”. In [43], we represented UndrrT in FL, increased its organization and stored it
in a Web document. As illustrated by Figure 1 – which uses the Uniform Modeling
Language (UML) [44] – and Box 4 (which uses FL [19]), this document organizes UndrrT
into a subtype hierarchy that uses (i) whenever possible, subtype partitions or other
subtype exclusion sets, (ii) the MSO top-level concept types, and (iii) some additional
types when this is required for categorization purposes. This Web document – which is
both an HTML document and a KR storing document – is also informally structured via
sections and subsections, with respect to some of the MSO types, thus in a non-subjective
and systematic way. Thanks to these various points, the terms and relations between the
terms in UndrrT are much easier to understand and retrieve (by following relations
between them or via queries) than terms in the original UNDRR document: these last
terms are only informally defined and only listed in alphabetic order.

Among three points listed in the previous paragraph, the first two also enable some
automatic checking of the way the UndrrT terms are used in KRs or specialized by KRs,
in order to (i) detect full or partial misinterpretation of some of these terms, and (ii) guide
knowledge representation. E.g., instances of the type undrrT#Disaster_risk_management are
defined to be usable as source nodes in relations that have a signature with first parameter
undrrT#Disaster_risk_management or one of its supertypes. Since one of these supertypes
is pm#Process, and since the MSO provides many types of relations from pm#Process (e.g
pm#object, pm#parameter, pm#duration, pm#agent, pm#experiencer, etc.), such relations are
usable (and similarly by all people) from all instances of
undrrT#Disaster_risk_management.

The use of the MSO for representing UndrrT also highlighted important ambiguities
that are not resolved by the sometimes lengthy informal definitions associated with the
terms. E.g., are the types undrr#Vulnerability, undrr#Exposure and undrr#Resilience
meant to be specializations of what pm#Characteristic_or_dimension_or_measure means
or of what pm#State (which refers to non-evolving kinds of situations) means? In our

Sustainability 2023, 15, 10803 14 of 26

UndrrT representation [43], we selected the first interpretation since then representing
information using these types is easier than with the second interpretation. However,
some other persons using UndrrT probably have interpreted and used these UndrrT
terms as if they represented states. These two interpretations cannot be reconciled: they
are exclusive. Thus, general KS is clearly reduced by such ambiguities.

Sustainability 2023, 15, 10803 15 of 26

Legend:
the

graphic syntax of UML – the Uniform Modeling Language [44] – is used for
1. supertype relations: these are the untyped upward relations; for the other relations, the type

name is in italics;
2. relation cardinalities (e.g. “1..*”), i.e. quantifiers for the destination nodes

(the quantifier for the source node of these relations is implicit: it is always the universal
quantifier);

3. the “{disjoint, not complete}” specification for the first above set of subtypes: the types in this
set are exclusive but the set is not complete and hence it is not a subtype partition.
For other details, see Box 4.

Figure 1. UML-like representation of the relations represented with FL in Box 4 (Box 4 shows a
small part of the above-cited FL representation and extension of UndrrT) [44].

Sustainability 2023, 15, 10803 16 of 26

Box 4. Commented extract of the FL representation of the UNDRR terminology (as in Figure 1, this
extract does not include relations for informal definitions and annotations but here there are many
comments that explain the meaning of the used abbreviations and FL expressions).

//Comments are prefixed by "//" and here in italics; the FL namespace separator is '#', not ':'.

pm#undrrT#Disaster_risk_handling //"pm#undrrT#": the type, created by pm, was implicit in UndrrT

 /^ pm#Process, //"/^" or "↗": supertype relation in FL

 pm#object: 1..* undrr#Disaster_risk, //"1..*": one or several

 \.part: //"subtype relation" and "part relation between the instances of the connected types"

 e{ //In addition to be destinations of "\.part", the next two types are exclusive: "e{…}"

 undrrT#Disaster_risk_assesment

 (undrrT#Disaster_risk_management //"(...)": isolation of relations starting from this type

 pm#goal: 1..* (undrrT#Disaster_risk_reduction

 pm#parameter: 0..* undrrT#Disaster_risk_reduction_strategy_or_policy),

 \. //"\." or "↘": subtype relation in FL

 //No "e{ ...}" here since the following subtypes are not necessarily exclusive

 undrrT#Prospective_disaster_risk_management //This type and its next four siblings

 undrrT#Corrective_disaster_risk_management // are direct subtypes of

 undrrT#Compensatory_disaster_risk_management // undrrT#Disaster_risk_management

 (undrrT#Community-based_disaster_risk_management

 \. undrrT#Local-and-indigenous-peoples_disaster_risk_management)

 (undrrT#Mitigation //Since this type name is ambiguous, pm adds a clearer one

 = pm#undrrT#Disaster_mitigation // via this equivalence relation

) __[author: pm] //pm believes that the last subtype relation is true even though

 // it is not in UndrrT (neither explicitly nor implicitly)

) //End of relations from undrrT#Disaster_risk_management

 }. //End of the exclusion set and of all relations

3.2. A General Model for Organizing and Representing Search&Rescue Information
As opposed to other general ontologies, the MSO provides a type for “description

instruments or results” (alias, “information objects”, e.g. procedures, stories, languages,
object-oriented classes, maps) and many subtypes for it, most of which are from KRLO.
These types are useful for categorizing and representing many information objects that
can be in risk/emergency management. Box 5 shows that the Search&Rescue domain
requires many of these subtypes for categorizing information, e.g. for maps and
procedures exploiting or enriching maps.

Box 5 shows the distinction between concrete and abstract information objects. It
leads to distinguishing concrete maps from abstract ones. A concrete map, e.g. one
displayed on a screen paper or on paper, is a 2D or 3D graphic representation of physical
objects. On the other hand, an abstract map is a structural representation of a concrete
map. Advanced Search&Rescue tasks imply that (i) search functions must exploit
characteristics of map objects, and (ii) search agents doing terrain mapping or
discovering victims or possible indices of victims must add objects to the map. Hence,
structurally, an abstract map for such tasks should not be a set of pixel representations but
should permit the storage, querying and update of (i) object representations that are, were
or may be part of the map, and hence also (ii) at least their partOf relations, types and
attributes. These requirements do not mean that such maps should be directly stored in a
KB, using relations. Indeed, using KRs would not only be an inefficient way to store and
handle spatial coordinates or relationships of map objects, this would also make them
difficult to exploit via classic programs, i.e. those only based on classic structures such as
object-oriented classes. Therefore, such maps should remain abstract data structures but
should be represented or implemented in much richer structures than those in binary
formats for the 2D/3D abstract maps: raster image formats (pixel-based formats) and
vector formats (graphics/geometry + texture based format, e.g. SVG and OBJ). More
information can be described via the Geography Markup Language (GML) which uses a
very restricted kind of KRL – GML is used by the Web Feature Service (WFS), an
interface model created by the Open Geospatial Consortium (OGC) to support requests
for geographical features across the web using platform-independent calls. However,
GML is not for storage purposes. In any case, ideally, for each physical object, such a map
would store a reference (e.g. an identifier or a pointer) to an information object
representing this object in a KB, and this KB would support semantic queries about such
objects. For classic queries – the structural and lexical ones – abstract data structures are

Sustainability 2023, 15, 10803 17 of 26

sufficient. For conceptual queries or navigation, semantic relations stored in data
structures can be dynamically extracted and imported into the KB, when needed and
based on the kinds of needed relations. To that end, FL and WebKB-2 have been
extended to enable the reference to – and, when needed, automatic call of – “relation
generators” (as we call them); they are represented in ways roughly similar to normal
relations or to function calls.

Box 5. Subtype hierarchy of MSO types that are useful for categorizing description-related types in
Search & Rescue representations.

//For clarity purposes, an informal representation is used below, not a representation in FL:

// an indented list is used for showing subtype relations between types,

//Still for clarity purposes, from now on in boxes and figures, the source prefix of each

// type identifier is left implicit (-> all types come from the MSO).

//Below, in this box, bold italic characters are used for referring to terms that are listed in Box 6

// while bold non-italic characters are simply for highlighting purposes.

Description_instrument-or-result-or-container //Alias Description_object

 Description_semantic-content //E.g. Logic_proposition

 Description_instrument-or-result //Alias Information_object

 Abstract_description_instrument-or-result //Alias Information_object

 Abstract_description_instrument-or-result_wrt_the_described_thing

 Situation_abstract_description_instrument-or-result //E.g. Principle_of_Coriolis_acceleration

 Process_abstract_description_instrument-or-result

 Control-structure_based_description_instrument-or-result //E.g. While_loop, Abstract_procedure

 Abstract_function

 Declarative_based_abstract_description_instrument-or-result //E.g. Petri-Net

 Search_algorithm

 Graph-traversal_and_path-search_algorithm //E.g. the A* algorithm

 State_abstract_description_instrument-or-result //E.g. Object_oriented_class, Array

 Entity_abstract_description_instrument-or-result //E.g. Path_description, Integer and each term in Box 6

 Abstract_description_instrument-or-result_wrt_the_used_method_or_instrument

 Non-declarative_abstract_description_instrument-or-result

 Declarative_abstract_description_instrument-or-result

 Semantic_abstract_description_instrument-or-result

 Semantic_description_instrument //E.g. Java_semantic, Logic_semantic, Type

 Semantic_description_result //E.g. Semantic_of_a_KB, Semantic_of_a_program

 Logic-independent_semantic_description_result //E.g. Logical_statement

 Logic-dependent_description_instrument //E.g. Logical_sentence

 Structural_abstract_description_instrument-or-result

 Abstract_data_type //E.g. Object_oriented_class, Array, Integer

 Structural_abstract_language-or-language_element //E.g. Java_abstract_grammar

 Concrete_description_instrument-or-result

 Concrete_description_result //E.g. Java_concrete_function, Concrete_map

 Concrete_description_instrument //E.g. Java_concrete_grammar, Character

 Structural_concrete_description_instrument //E.g. Concrete_data-structure_type

 Semantic_concrete_description_instrument //E.g. Concrete_semantic-structure_type

 Description_container //E.g. File, Software, Web_server, KB_server

Box 6 shows a generic representation of such abstract maps that is useful for
Search&Rescue: it is a list of semantic relations between such maps and some other kinds
of objects. This representation can be viewed as a generalization or “minimal general
specification” of abstract data structures for such maps. More precisely, Box 6 is a top-level
ontology – hence a minimal general specification, listing or model – of functions and of
the most interesting kinds of objects that these functions could exploit, among those
useful for Search&Rescue. Before explaining the notation used in Box 6, it should be that
the goal of this box is to represent three combinable important functions:
 A first one for retrieving objects (generally, people) within a map, given some of their

types or ranges for their attributes, e.g. a range for the expected health or social
value of actual/potential victims at particular places in a map (since an often-used
strategy is to first try to save the healthier and most socially valuable victims).

 A second one for computing values (possibly with some associated certitude
coefficients) for particular attributes of particular objects in a map, given other
parameters such as the environmental context (weather, ...) and when the rescue

Sustainability 2023, 15, 10803 18 of 26

begins and/or when the objects can or could be retrieved (since, for example, some
victims may be difficult to save by the time they are found).

 A third one for computing the best paths (possibly given strategic rules and/or a
search algorithm) from a starting place to others (thus, possibly an area) for finding
objects of given attributes, with additional attributes to maximize (e.g. the safety of the
rescuing agents and of the victims) and others to minimize (e.g. the power
consumption of a rover used for exploring a disaster area in search of victims).
In object-oriented (OO) programs, functions are often associated with some of the

objects they exploit by being represented as methods of classes for these objects. This
kind of association, which in KRLO is represented via a relation type of name “method”,
helps normalizing and organizing the code, and is now commonly supported by most
common programming languages. Box 6 uses “method” relations since it is meant to be a
minimal general specification of important primitive functions for Search&Rescue. The next
three points comment this use.
 Box 6 uses“_{” and “}” to delimit the set of relations that define a type. These

delimiters are not necessary in FL but are used here to make the specifications look
more like those in common OO-like notations, UML textual notations and frame-
based notations, and hence more intuitive to people that are used to those notations.
(E.g. the separators “,” and “;” are used in Box 6 where “ ” and “,” would otherwise
be used in classic FL.) However, despite this intended syntactic similarity with OO
classes, genuine KRs are represented in Box 6, not just OO classes; indeed, genuine
relations are used, not class attributes (unlike relations, attributes are local to classes
and are not first-order entities).

Sustainability 2023, 15, 10803 19 of 26

Box 6. Commented FL representation of object-oriented classes for Search&Rescue.

//The types in bold characters (in italics or not) are Abstract_representation types. The types in

// italics (and not in bold) are information object types that are not Abstract_representation types.

//The other types (except for "Thing") are subtypes of Characteristic_or_dimension_or_measure.

//Variable names are prefixed by "?", as in many other KRLs.

//As in the previous boxes, when comments at the right of some code line are spread on multiple lines,

// each expression in a line is mostly focused on the code of that line.

Abstract_map /^ Abstract_representation, //Representation of a class for maps

 _{ attribute: 1 Map_scale, //The scale of a map should be associated to it

 1 Temporal-point-or-region_coordinate ?timeStamp, //When the map was valid

 1..3 Spatial-point-or-region_coordinate; //A 2D/3D point/area

 part: 1..* Physical_object_representation_in_an_abstract_map; //Object parts

 //This set can be implemented via a 2D/3D array or an SVG structure

 method: Abstract_map___objects_possibly_at //------ For retrieving objects in (a portion of) a

 (1 Abstract_map, 1..3 Spatial-point-or-region_coordinate, // map (specified here),

 0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects, // wrt. their types

 0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects) // or attributes, e.g.

 // health, social value, etc. The next line specifies the types in the returned set

 -> .{1..* Physical_object_representation_in_an_abstract_map} //-> The retrieved objects

 { }; //The body of this method could be written here, within these "{" and "}"

 method: Abstract_map___values_of_objects_possibly_at //------ For knowing the values of objects

 (1 Abstract_map, 1..3 Spatial-point-or-region_coordinate, // in (a portion of) a map

 0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects, // given the types&attributes

 0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects, // of searched objects

 1..* Temporal-point-or-region_coordinate ?valuesDuringThisTimePeriod, // at a given time,

 0..* Environmental_context ?environmentalContextOfTheSearch) // wrt. the weather, …

 -> .{0..* Representation_of_the_value_of_a_physical-object}; //-> The retrieved values

 method: Abstract_map___best_paths_from_somewhere_to_at_least_1_object //------ For knowing the best

 (1 Abstract_map, // paths to take (in a map),

 1..3 Spatial-point-or-region_coordinate ?fromPlace, // from a place to

 1..3 Spatial-point-or-region_coordinate ?regionOfSearchedObjects, // another, to find

 0..* Type ?typeOfAtLeastOneOfTheSearchedPhysicalObjects, // objects of given

 0..* Attribute ?attributeOfAtLeastOneOfTheSearchedPhysicalObjects, // attributes, at

 1..* Temporal-point-or-region_coordinate ?valuesDuringThisTimePeriod, // a given time,

 0..* Environmental_context ?environmentalContextOfTheSearch, // wrt. the weather, ...,

 0..* .{Thing, 1..* Type ?typeOfAttributeOfTheThing, // given constraints on the

 0..1 Value ?maxValue, 0..1 Value ?minValue // types+values of the objects

 } ?constraintsDuringTheSearch, // to find, while minimizing

 0..* Type ?typeOfAttributeToMinimizeForBestPaths, // some attributes (e.g. Battery_use)

 0..* Type ?typeOfAttributeToMaximizeForBestPaths, // & maximizing others (e.g. Safety)

 0..1 Abstract_function ?fctToSelectBestPaths, // and/or using a function to do so;

 0..1 Integer ?MaxNumberOfBestPaths, // a maximum number of best paths and

 0..* Search_algorithm ?preferredSearchAlgorithm) // a given algorithm may also be used

 -> 0..* .{1..* Spatial-point-or-region_coordinate} //-> The computed best paths

 }.

Physical_object_representation_in_an_abstract_map

 _{ attribute: 0..1 Reference_to_a_semantic_representation, //Identifier of (or pointer to) a KB object

 // that represents this physical object

 1 Representation_of_the_location_of_a_physical-object,

 0..* .{ 1 Physical-object_attribute, 0..1 Certitude_of_a_value };

 part: 0..* .{ 1 Physical-object_representation_in_an_abstract_map ?embeddedObject,

 0..1 Certitude_of_a_value };

 part of: 0..* .{ 1 Physical-object_representation_in_an_abstract_map ?embeddingObject,

 0..1 Certitude_of_a_value };

 method: Physical_object_representation_in_an_abstract_map___value

 (1 Physical_object_representation_in_an_abstract_map,

 1..* Temporal-point-or-region_coordinate ?valueDuringThisTimePeriod,

 0..* Environmental_context_of_a_search)

 -> 1 Representation_of_the_value_of_a_searched_physical-object

 }.

Representation_of_the_location_of_a_physical-object

 _{ attribute: 1..3 .{ 1 Spatial-point-or-region_coordinate, 0..1 Certitude_of_a_value } }.

Representation_of_the_value_of_a_physical-object

 _{ attribute: 1 Quantitative-or-qualitative_social_value_of_something, 1 Certitude_of_a_value }.

 One of the advantages of associating functions to information structures via
“method” relations is that this supports the use of an intuitive OO-like naming
scheme for the functions: in Box 6, see the “__” within method names. These names

Sustainability 2023, 15, 10803 20 of 26

follow the naming scheme “className__coreMethodName”. With a genuine OO
programming language, the part before the “__” is omitted because when a method
is called on a particular object, this one (and hence, indirectly, its class) is specified
just before the method, e.g. as in “objectName.coreMethodName” when the classic
dot notation is used. With a KRL, methods are not local to an object or class – like
relations from a object are not local to this object in the way its attributes are – and
hence the name of the class has to be specified with the method name, e.g. via the
above-cited normalizing and compact OO-like naming scheme.

 Another advantage of such associations is that, combined with the use of UML-like
cardinalities (e.g. “1..3”, “0..*”) in the parameters of these methods or functions,
they provide rather easy-to-use ways to generalize – or abstract away –
implementation particularities, at least compared to programming languages.
Indeed, with a programming language, class definitions are only tree structures and
functions do not use cardinalities nor have successive default parameters; this
generally forces a user of such languages to (i) cut a graph of relations (i.e. the model
in the user's mind) into pieces when representing it via such structures, (ii) make the
relations implicit, (iii) choose a rather arbitrary embedding order between the graph
elements, and (iv) implement various similar versions of a same function, based on
particular aggregations of datatypes for the parameters.

3.3. Representations about Automatic Explorations of a Disaster Area
This subsection shows how the process of systematically exploring a disaster area (e.g.

by a rover, to search for victims) can be represented at a high-level (as well as lower ones).
The reuse of functions from the previous subsection is not shown. The focus here is to
illustrate how (the elements of) procedures, tasks or processes can be variously
organized and represented, via KRs. Box 7 provides an example systematic search
procedure written in a procedural notation. Such procedures can often be automatically
converted into pure functions (and this is the case of the one in Box 7), thus in a
declarative way. Pure functions can then be represented via a KRL that handles
functions, e.g. FL and KIF. With FL, or with KRLO and any KRL, procedures can also be
directly represented in a state-based form. Once in a KB, functions and procedures can
be organized via generalization relations and also generalized by more classic kinds of
KRs, e.g. logical formulas representing rules.

Box 7. Commented procedure for a systematic search by a rover, one based on an infinite loop in
which the only decision is to go ahead or not; the notation used here is common to C and Java but
an FL version can be obtained by replacing each “(” by “_(”.

while (true) //Infinite loop. Below, "()" indicates a function call (the parameters are not specified)

{ if (further_exploring_is_not_useful()) //To decide that, the methods of Section 3.2 are used

 { come_back_to_base(); break; } //"break": the loop is broken when the rover has returned

 else if (going-ahead-and-then-come-back-to-base_is_not_possible()) //Via the methods of Section 3.2

 come_back_to_alternative_route (); //E.g., given battery levels, obstacles, mechanical problems

 else go_ahead();

}

// Here are two example cases for a rover exploring underground spaces and fails, under debris and ruins:

// * The rover cannot continue on a particular path (e.g. because it would risk getting stuck):

// it returns in the opposite direction to a point where it can continue its exploration,

// an intersection with a not yet explored path.

// * The rover has explored the last path (-> "normal" end of mission) or

// cannot continue exploring (e.g. because it has not enough energy): it returns to its base.

Figure 2 illustrates some relations (a partOf one and several subtype ones) between top-level tasks
in Search&Rescue. Such relations can be exploited to categorize functions, e.g. to exploit and
organize a library of functions useful for Search&Rescue, as explained in the introduction of this
article. Such a library may for instance organize functions that represent different ways of
performing similar processes. This library – and thus programs that reuse it – can also include a
function selecting the most relevant of these different ways for a particular environmental context
given as a parameter. Box 8 illustrates some further subtype relations from one of the tasks cited in
Figure 2.

Sustainability 2023, 15, 10803 21 of 26

Box 8. FL categorization of the “Safe_path_backtracking” task or process mentioned in Figure 2.

Selecting_a_path /^ Process, //reminder: here, only type names are used (not type identifiers)

 part of: 0..* (Search_and_rescue /^ Process),

 \. (Selecting_a_safe_path \. (Selecting_a_safe_and_recently_explored_path \. Safe_path_backtracking)),

 \. partition

 { Path_selection_when_going_ahead_is_possible_and_useful

 (Path_selection_when_going_ahead_is_not_possible_or_not_useful \. Safe_path_backtracking)

 }.

Legend: as in Figure 1

Figure 2. UML-like representationof some relations between some processes of Search&Rescue [44].

3.4. Representations about Ways to Create Rovers Adapted to a Terrain
The research articles of [45] or [46,47], here ordered by increasing length, describe a

simulation tool helping to design rovers adapted to a terrain, for Search&Rescue
purposes. Since the content of these article is in natural language, it is difficult – from this
content, manually or automatically – to identify, match, represent and synthesize (i) all
the important described objects (e.g., the described tasks and their instruments, subtasks,
inputs, outputs, ...), and (ii) the relations between these objects. Box 9 illustrates relations
from processes and software, and Box 10 illustrates relations from artifacts, attributes
and descriptions. These boxes also show how the represented types are categorized as
subtypes of top-level types from the MSO. The relations are representations are mostly
formal but the use of informal parts (the strings within double quotes) is also illustrated
since it is sometimes difficult or not worthwhile to formalize everything. Without all
such relations, such objects cannot be retrieved via semantic browsing or querying.
Without a shared KB (such as the ones described in Section 2.3) where such objects and
relations can be found and complemented, general KS cannot be supported. Ideally, such
relations should be added into shared KBs by the information authors (researchers,
engineers, technicians, …). Indeed, as earlier noted, relying on knowledge engineers to
read articles and represent such relations is not scalable and articles often lack the
information necessary for inferring some generalization relations or other important
relations.

Sustainability 2023, 15, 10803 22 of 26

Box 9. Commented FL representation of the “important information directly related to processes or
software” from three articles about “3D simulation of Search&Rescue Autonomous Systems (SR-AS)
and their environments for disaster management”representation of object-oriented classes for
Search&Rescue.

 //From now on, "0..*" cardinalities on relation destinations are left implicit

3D_simulation_of_an_SR-AS_and_its_environment_for_a_mission //"SR-AS": Search&Rescue Autonomous Systems

 /^ (3D_simulation /^ Process), //A direct supertype and an indirect one

 object: 1..* SR-AS, //SR-AS is detailed in Box 10 (the next box)

 during: (Disaster_rescue_team_deployment time: "first hours after a disaster"), //"...": informal representation

 part of: (Finding_a_best_design_and_configuration_of_an_SR-AS_for_a_mission

 part of: (Elaborating_a_disaster-recovery-management_strategy

 part of: (Disaster-recovery_management /^ Process))

 (Re-acquiring_knowledge_on_an_area_that_had_environmental_alterations

 part of: Elaborating_a_disaster-recovery-management_strategy),

 result: (Assessment_of_an_SR-AS_for_a_mission_or_of_a_strategy_for_this_mission

 /^ Description_instrument-or-result-or-container,

 \. Best_design_and_configuration_of_an_SR-AS_for_a_mission

 Assessment_of_the_configuration_of_an_SR-AS_for_a_mission

 Assessment_of_a_disaster-recovery-mission_success_expectancy

 Assessment_of_how_much_time_or_the_SR-AS_saves_for_the_rescue_team

 Assessment_of_the_autonomous-system_survival_probability,

 input: Representation_of_the_environment_of_an_area //cf. end of Box 10

 (Objectives_of_the_Search-and-Rescue_mission /^ State,

 part: Disaster-result_state Disaster-victim-location_state),

 instrument: (Software_for_simulating_an_autonomous-system_and_its_environment

 \. (3D_simulation_system /^ Description_instrument-or-result-or-container,

 \. (Gazebo-3D description: "graphic engine that can perform 3D physical simulations while

 displacing a rover within a surrounding virtual world, hence allowing

 one to test algorithms, design robots and simulate their behavior",

 part: (Physics_engine part: Mathematical Engine, input: Scenario)

 Open-gestures_recognition_engine Terrain-data_generating_engine

 (Graphic_rendering_engine input: Texture Light Shadow))

 (Robot_Operating_System description: "software usable for communication between robot parts",

 part: (RViz description: "3D visualization environment for ROS"))),

 part:

 (Terrain_generation_and_modeling

 output: (Digital-Elevation-Model_of_the_terrain

 /^ (Digital-Elevation-Model /^ Description_instrument-or-result-or-container),

 part: (Final_Digital-Elevation-Model_of_the_terrain

 part: First_Digital-Elevation-Model_of_the_terrain)),

 part: (First_phase_of_terrain_acquisition_for_terrain_generation_and_modeling

 input: (Terrain_description /^ Description_instrument-or-result-or-container,

 \. Geographical-Information-System_data,

 result of: (Terrain_surveying_or_mapping \. Photogrammetry Land_surveying,

 instrument: //the next type is defined in Box 10

 Sensor_artefact_that_can_be_used_as_terrain_mapping_instrument)),

 output: First_Digital-Elevation-Model_of_the_terrain)

 (Integrating_objects_and_characteristics_to_the_simulated_terrain_to_enhance_its_realism

 input: First_Digital-Elevation-Model_of_the_terrain,

 parameter: Physical_property, //cf. end of Box 10

 part: Analysis_of_properties_of_the_terrain_eg_roughness_density_bounciness_stiffness

 Generating_random_variations_of_terrain_properties_eg_via_Monte-Carlo_distribution

 Adding_real_obstacles_gathered_from_low-altitude-drone_flight, //rocks, rubble, …

 output: (Final_Digital-Elevation-Model_of_the_terrain

 description: "this includes a 3D CAD design, ground parameters (bounciness,

 friction, stiffness, ...), existing data, characteristics features of

 rigid bodies, kinematics laws, coefficients that describe an impact, …")

))

 (Robot_designing input: (Robot_design_description annotation:"description of architectures/shapes (e.g.

 via 3D CAD), physical_properties, behaviors, sensors and actuators"))

 (Environment_parameterization_in_the_3D_simulation

 input: Representation_of_the_environment_of_an_area). //cf. end of Box 10

Sustainability 2023, 15, 10803 23 of 26

Box 10. Commented representation of the “important information directly related to artifacts,
attributes and descriptions” from three articles about “3D simulation of Search&Rescue Autonomous
Systems (SR-AS) and their environments for disaster management”.

SR-AS = Search-and-rescue_autonomous-system, /^ Artefact,

 interest: "can reach locations unattainable or dangerous for humans",

 \. (Ground-based_SR-AS

 \. (ArcTurius_Rover annotation: "created by the LTCI laboratory of Télécom Paris",

 part: (Hokuyo_UTM-30LX_Scanning_Laser_Rangefinder_LIDAR

 annotation: "chosen for ArcTurius_Rover because this LIDAR supports the

 Robot_Operating_System (ROS) communication system"))),

 part: //there are many kinds of parts; below are examples

 (SR-AS_joint /^ (Joint /^ Concrete_spatial-entity_playing_a_role),

 \. (SR-AS_fixed_joint annotation: "no freedom degrees")

 (SR-AS_hinge_joint annotation: "rotates along the axis and has some limited range specified by

 the lower and upper limits; can for instance be used to describe the movement of a wheel

 with respect to the chassis to which it is attached"),

 annotation: "The modeling of joints (e.g. maximum efforts+velocity they can endure) is very

 important since (i) this permits the integration of many physical parameters, and

 (ii) they play a key role in the physical integrity of the SR-AS after a collision")

 Actuator_artefact_that_can_be_a_useful_part_of_an_SR-AS

 Sensor_artefact_that_can_be_a_useful_part_of_an_SR-AS. //defined below

Sensor_artefact /^ Artefact Sensor,

 \. (Sensor_artefact_that_can_be_a_useful_part_of_an_SR-AS

 \. (Distance_sensor_artefact \. Ultrasonic_sensor Micro-wave_sensor LIDAR Camera)

 (Location-and-attitude_sensor_artefact \. Inertial-measurement-unit_based_sensor_artefact)

 Odometer_artefact (Radar \. Ground_penetration_radar),

 annotation: "It is important to precisely model the sensors of an SR-AS (shape, size, mass,

 relative position wrt collision domain of the rover, ...), e.g. evaluating the position of

 a LIDAR for minimizing the impact of external noise. With respect to sensor modeling,

 some parameters to be taken into account while modeling a laser sensor include:

 (i) physical shape, (ii) relative poses with respect to SR-AS components, (iii) number of

 samples per unit of time, (iv) angular resolution, (v) minimum and maximum distance, and

 (vi) interference and noise (since sensors are sensitive to noise).

 For this last point, a Gaussian distribution with some moment parameterization

 (that is, given the mean and covariance of the distribution) can be used."

),

 \. (Sensor_artefact_that_can_be_used_as_terrain_mapping_instrument

 \. (Satellite \. TerraSAR) Drone (Radar \. InSAR)

 (LIDAR \. Hokuyo_UTM-30LX_Scanning_Laser_Rangefinder_LIDAR)).

Physical_property /^ Characteristic_or_dimension_or_measure,

 description: "e.g. one of the characteristics features of rigid bodies: inertia, mass, the respect of

 kinematics laws, any kind of friction, coefficients that describe the reaction to an impact, etc.".

Representation_of_the_environment_of_an_area /^ Description_instrument-or-result-or-container,

 \. Representation_of_the_environment_of_a_disaster_area,

 description of: (Environment_situation /^ Situation, \. Weather Fire Season,

 attribute: Temperature Humidity Magnetic_field Pressure Luminosity

 (Elevation \. Depth)).

4. Conclusions
The first kinds of contributions of this article were (i) its highlighting of the

insufficiencies of restricted KS – thus, the waste of efforts and opportunities that not using
general KS in order to support generals tasks such as risk/emergency management – and
(ii) its panorama of complementary techniques that support general KS. Despite the fact
that the problems related to traditional KR&S technologies are rather easy to be aware of
when the goal is to perform general KS, this last goal is still original since (i) it requires
efforts and training from knowledge providers (in exchange for less efforts and more
results for knowledge consumers), (ii) developing and implementing techniques, tools
and general ontologies for general KS is a difficult and very long work, and (iii) the focus
of the research community is on quick and automated results since these ones are easier
to publish, more granted or of more interest to the industry, and more incremental to
develop and implement. Nowadays, most of general KS related research focus on the

Sustainability 2023, 15, 10803 24 of 26

content of foundational or lexical ontologies. Section 2.2 is about the (manual)
integration of such ontologies into a unique one, something far less researched. More
generally, the four subsections of Section 2 have to draw on techniques previously
developed by the first author for these subsections to present techniques that are both
complementary and relevant for general KS. Although some new research elements have
been included, the originality of the provided panorama is in the synthesis it makes:
together, the described techniques provide a rather complete approach for supporting
general KS efforts useful for risk/emergency management, while still allowing the reuse
of advances in the well-researched field of restricted KS. Together, these techniques
answer the following research question: how to let Web users collaboratively build KBs
(i) that are not implicitly “partially redundant or inconsistent” internally or with each other,
(ii) that are complete with respect to particular subjects or criteria, (iii) without restricting
what the users can enter nor forcing them to agree on terminology or beliefs, and (iv)
without requiring people to duplicate knowledge in various KBs or to manually search
knowledge in various KBs and aggregate knowledge from various KBs? Although our
framework for these points is now well developed, much more is still (and will probably
always have) to be developed or implemented, e.g., more features in FL and FE, more
KRLs or equivalence rules between knowledge constructs represented in KRLO, more
general ontologies integrated in the MSO as well as more representations of cooperation
rules within or between shared KBs – rules for the owners or users of these KBs to
choose from. However, at last, these extensions can now be made by these KB owners
and users.

Via Section 3, the second part of this article, the second kinds of contributions of
this article were (i) KRs showing how complementary kinds of risk/emergency
management related information can be represented for general KS purposes, and (ii)
highlights of the interest of creating or reusing such KRs. The focused-on example
domains were (i) the UNDRR terminology, (ii) a general model to represent and organize
Search&Rescue information, (iii) tasks or procedures for automatically exploring a disaster
area, and (iv) research articles about the use of a simulation tool for creating rovers
adapted to a terrain. The prototype rover designed using the above represented pieces of
information [17] is also validating them. Even regarding this last point, more work will
have to be performed via more extensive field testing. More generally, KRs will also
continue to be added to the MSO of the WebKB-2 server for supporting risk/emergency
management but, since this is a huge domain, the additions will understandably be
related to knowledge first needed by our own projects.

Regarding the most immediate planned extensions, WebKB-2 – and especially its
procedures for evaluating or preserving the KB content quality and general KS
supporting organization – will continue to be refined. These procedures allow their users
to exploit the ontologies of their choices, and thus so far are generic: they have not yet
proved to be domain sensitive, including in risk/emergency management.

Author Contributions: Conceptualization, P.A.M. and T.J.T.; methodology, P.A.M.; software,
P.A.M.; validation, P.A.M. and T.J.T.; formal analysis, P.A.M.; investigation, P.A.M.; resources,
Ph.A.M.; data curation, P.A.M.; writing—original draft preparation, P.A.M.; writing—review and
editing, P.A.M. and T.J.T.; visualization, P.A.M.; supervision, P.A.M.; project administration, P.A.M.
and T.J.T.; funding acquisition, P.A.M. and T.J.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data and ontologies generated or analyzed during this study are
Web-accessible, e.g. http://www.webkb.org/kb/nit/o_risk/UNDRR/d_UNDRR.fl.html (accessed
on 7 August 2022). In case of difficulties to find some of them, the corresponding author welcomes
reasonable requests for Web addresses of these resources.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results.

Sustainability 2023, 15, 10803 25 of 26

References
1. Lenat, D.; Guha, R.V. CYC: A Midterm Report. AI Magazine, 15 September 1990, pp. 32–59.
2. Sharma, A.; Goolsbey, K.; Schneider, D. Disambiguation for Semi-Supervised Relation Extraction of Complex Relations in

Large Commonsense Knowledge Bases. In Proceedings of the 7th Conference on Advances in Cognitive Systems, Cambridge,
MA, USA, 2–5 August 2019.

3. Tanon, T.P.; Pellissier, T.; Vrandečić, D.; Schaffert, S. From Freebase to Wikidata: The Great Migration. In Proceedings of the
WWW’ 2016, 25th International Conference on World Wide Web, Montréal, QC, Canada, 11–15 April 2016; pp. 1419–1428.

4. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.; Hellmann, S.; Morsey, M.; van Kleef, P.; Auer, S.; et
al. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 2015, 6, 167–195.

5. Inan, D.I.; Beydoun, G.; Opper, S. Towards knowledge sharing in disaster management: An agent oriented knowledge analysis
framework. In Proceeding of the Australasian Conference on Information Systems 2015, Adelaide, Australia, 30 November–4
December 2015.

6. Malizia, A.; Astorga-Paliza, F.; Onorati, T.; Díaz, P.; Aedo Cuevas, I. Emergency Alerts for all: An ontology based approach to
improve accessibility in emergency alerting systems. In Proceedings of the ISCRAM 2008, 5th International Conference on
Information Systems for Crisis Response and Management, Washington, DC, USA, 4–7 May 2008; pp. 197–207.

7. Gaur, M.; Shekarpour, S.; Gyrard, A.; Sheth, A. Empathi: An ontology for emergency managing and planning about hazard
crisis. In Proceedings of the 2019 IEEE 13th International Conference on Semantic Computing (ICSC), Newport Beach, CA,
USA, 30 January–1 February 2019; pp. 396–403.

8. Elmhadhbi, L.; Karray, M.H.; Archimède, B.; Otte, J.N.; Smith, B. An Ontological Approach to Enhancing Information Sharing
in Disaster Response. Information 2021, 12, 432. https://doi.org/10.3390/info12100432.

9. Snaprud, M.; Radianti, J.; Svindseth, D. Better access to terminology for crisis communications. In Proceedings of the ITDRR
2016, International Conference on Information Technology in Disaster Risk Reduction, Sofia, Bulgaria, 16–18 November 2016;
Springer: Cham, Switzerland, 2016; pp. 93–103.

10. Munkvold, E.B.; Opach, T.; Pilemalm, S.; Radianti, J.; Rod, J.K. Sharing Information for Common Situational Understanding in
Emergency response. In Proceedings of the ECIS 2019, European Conference of Information Systems, Uppsala, Sweden, 8–14
June 2019.

11. Farquhar, A.; Fikes, R.; Rice, J. The Ontolingua Server: A tool for collaborative ontology construction. Int. J. Hum.-Comput. Stud.
1997, 46, 707-727.

12. Shadbolt, N.; Berners-Lee, T.; Hall, W. The Semantic Web Revisited. IEEE Intell. Syst. 2006, 21, 96-101.
https://doi.org/10.1109/MIS.2006.62.

13. Semantic Web. W3C (World Wide Web Consortium) 2021. Available online: https://www.w3.org/standards/semanticweb/
(accessed on 8 June 2022).

14. Jain, S.; Mehla, S.; Wagner, J. Ontology-supported rule-based reasoning for emergency management. In Web Semantics (Cutting
Edge and Future Directions in Healthcare); Academic Press: Cambridge, MA, USA, 2021; pp. 117–128.

15. Dobrinkova, N.; Kostaridis, A.; Olunczek, A.; Heckel, M.; Vergeti, D.; Tsekeridou, S.; Seynaeve, G.; De Gaetano, A.; Finnie, T.;
Efstathiou, N.; et al. Disaster Reduction Potential of IMPRESS Platform Tools. In The Revised Selected Papers of the Proceedings of
the ITDRR 2016, International Conference on Information Technology in Disaster Risk Reduction, Sofia, Bulgaria, 16–18 November 2016;
Springer: Cham, Switzerland, 2016; pp. 225–239.

16. Kontopoulos, E.; Mitzias, P.; Mossgraber, J.; Hertweck, P.; van der Schaaf, H.; Hilbring, D.; Lombardo, F.; Norbiato, D.; Ferri,
M.; Karakostas, A.; et al. Ontology-based Representation of Crisis Management Procedures for Climate Events. In Proceedings
of the ICMT 2018 (Workshop on Intelligent Crisis Management Technologies for Climate Events), at ISCRAM 2018, Rochester,
NY, USA, 20 May 2018.

17. Tanzi, T.; Bertolino, M. Autonomous Systems for Rescue Missions: Design, Architecture and Configuration Validation. Inf. Syst.
Front. 2021, 23, 1189–1202.

18. Dodds, L.; Davis, I. Linked Data Patterns—A Pattern Catalogue for Modelling, Publishing, and Consuming Linked Data. 2012,
56p. Available online: http://patterns.dataincubator.org/book/ (accessed on 8 June 2022).

19. Martin, P. Towards a Collaboratively-Built Knowledge Base of & for Scalable Knowledge Sharing and Retrieval. HDR Thesis
(240p; “Habilitation to Direct Research”), University of La Réunion, France, 8 December 2009. Available online:
http://www.webkb.org/doc/papers/hdr/ (accessed on 8 June 2022).

20. Martin, P. Knowledge representation in CGLF, CGIF, KIF, Frame-CG and Formalized-English. In Proceedings of the ICCS 2002,
10th International Conference on Conceptual Structures, LNAI 2393, Borovets, Bulgaria, 15–19 July 2002; pp. 77–91.

21. Martin, P.; Bénard, J. Creating and Using various Knowledge Representation Models and Notations. In Proceedings of the
ECKM 2017, 18th European Conference on Knowledge Management, Barcelona, Spain, 7–8 September 2017; pp. 624–631.

22. Ginsberg, M.L. Knowledge interchange format: The KIF of death. AI Magazine, 15 September 1991, pp. 57–63.
23. Hayes, P. IKL Guide. 2006. Available online: https://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html (accessed on 8

June 2022).
24. Codescu, M.; Horozal, F.; Kohlhase, M.; Mossakowski, T.; Rabe, F. Project Abstract: Logic Atlas and Integrator (LATIN). In

Proceedings of the Intelligent Computer Mathematics 2011, LNCS 6824, Bertinoro, Italy, 18–23 July 2011; pp. 287–289.
25. Codescu, M.; Kuksa, E.; Kutz, O.; Mossakowski, T.; Neuhaus, F. Ontohub: A semantic repository engine for heterogeneous

ontologies. Appl. Ontol. 2017, 12, 275–298.
26. ODM: Ontology Definition Metamodel, Version 1.1. OMG Document Formal/2 September 2014. Available online:

http://www.omg.org/spec/ODM/1.1/PDF/ (accessed on 8 June 2022).
27. Borgo, S.; Masolo, C. Foundational choices in DOLCE. In Handbook on Ontologies; Springer: Berlin/Heidelberg, Germany, 2009;

pp. 361–381.
28. Arp, R.; Smith, B.; Spear, A.D. Building Ontologies with Basic Formal Ontology; MIT Press: Cambridge, MA, USA, 2015; ISBN 978-

0-262-52781-1.
29. Speer, R.; Chin, J.; Havasi, C. ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. In Proceedings of the 31st AAAI

Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4444–4451.

Sustainability 2023, 15, 10803 26 of 26

30. Bergman, M.K. A Knowledge Representation Practionary: Guidelines Based on Charles Sanders Peirce; Springer International
Publishing: Berlin/Heidelberg, Germany, 2018; 464p, ISBN 978-3-319-98091-1.

31. Martin, P. The Multi-Source Ontology (MSO) of WebKB-2. 2004. Available online: http://www.webkb.org/doc/MSO.html
(accessed on 8 June 2022).

32. Martin, P. Correction and Extension of WordNet 1.7. In Proceedings of the ICCS 2003, 11th International Conference on
Conceptual Structures, LNAI 2746, Dresden, Germany, 21–25 July 2003; pp. 160–173.

33. Del Vescovo, C.; Horridge, M.; Parsia, B.; Sattler, U.; Schneider, T.; Zhao, H. Modular structures and atomic decomposition in
ontologies. J. Artif. Intell. Res. 2020, 69, 963-1021.

34. Kauppinen, T.; Hyvönen, E. Bridging the semantic gap between ontology versions. In Proceedings of the Web Intelligence
Symposium, Finnish AI Conference of 2004, Vantaa, Finland, 1–3 September 2004; Volume 2, pp. 2–3.

35. Euzenat, J. Corporate Memory through Cooperative Creation of Knowledge Bases and Hyper-Documents. In Proceedings of
the KAW 1996 Canada, November 1996; Volume 36, pp. 1–18. Available online:
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/euzenat/euzenat96b.html (accessed on 8 June 2022). See also
http://www.inrialpes.fr/exmo/papers/exmo1995.html#Euzenat1995a.

36. Martin, Ph. Collaborative knowledge sharing and editing. Int. J. Comput. Sci. Inf. Syst. 2011, 6, 14–29; ISSN 1646-3692.
37. Neutel, S.; de Boer, M.H. Towards Automatic Ontology Alignment using BERT. In Proceedings of the 2021 AAAI Spring

Symposium: Combining Machine Learning with Knowledge Engineering, Palo Alto, CA, USA, 22–24 March 2021.
38. Loser, A.; Schubert, K.; Zimmer, F. Taxonomy-based routing overlays in P2P networks. In Proceedings of the IDEAS 2004,

Database Engineering and Applications Symposium, Coimbra, Portugal, 7–9 July 2004; pp. 407–412.
39. Islam, M.T.; Mursalin, A.; Xuemin, S. P2P Approach for Web Services Publishing and Discovery. In Handbook of Peer-to-Peer

Networking; Springer: Boston, MA, USA, 2010; pp. 1315–1332.
40. Gharzouli, M.; Makhlouf, D. To Implement an Open-MAS Architecture for Semantic Web Services Discovery: What Kind of

P2P Protocol Do We Need? Int. J. Agent Technol. Syst. 2014, 6, 58-71.
41. Toure, M.; Guidedi, K.; Gandon, F.; Lo, M.; Guéret, C. MoRAI: Geographic and Semantic Overlay Network for Linked Data

Access with Intermittent Internet Connectivity. In Proceedings of the WI-IAT 2020, IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology, Melbourne, Australia, 14–17 December 2020.

42. Report of the Open-Ended Intergovernmental Expert Working Group on Indicators and Terminology Relating to Disaster Risk
Reduction. UNDRR (United Nations Office for Disaster Risk Reduction). 2017. Available online:
https://www.preventionweb.net/publications/view/51748 (accessed on 8 June 2022).

43. Martin, P. Representation and Organization of the UNDRR Terminology. 2020. Available online:
http://www.webkb.org/kb/nit/o_risk/UNDRR/d_UNDRR.fl.html (accessed on 8 June 2022).

44. OMG Unified Modeling Language Superstructure Specification, Version 2.1.1. Document Formal/05 February 2007, Object
Management Group, February 2007. Available online: http://www.omg.org/cgi-bin/doc?formal/2007-02-05 (accessed on 8
June 2022).

45. Bertolino, M.; Tanzi, T.J. Advanced Robot 3D Simulation Interface for Disaster Management. In Proceedings of the IEEE 2019
Kleinheubach Conference, Miltenberg, Germany, 23–25 September 2019; pp. 1–4.

46. Tanzi, T.J.; Bertolino, M. Towards 3D Simulation to Validate Autonomous Intervention Systems Architecture for Disaster
Management. In Proceedings of the ITDRR 2019, Information Technology in Disaster Risk Reduction, Kiew, Ukraine, 9–10
October 2019; 12p, hal-02364504.

47. Tanzi, T.J.; Bertolini, M. 3D Simulation to Validate Autonomous Systems Intervention in Disaster Management Environment.
In The Revised Selected Papers of the Proceedings of the 4th IFIP Conference on Information Technology in Disaster Risk Reduction, Kiew,
Ukraine, 9–10 October 2019; Springer: Cham, Switzerland, 2019; pp. 196–211.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury
to people or property resulting from any ideas, methods, instructions or products referred to in the content.

	1. Introduction
	2. Four Complementary Avenues for Supporting General Knowledge Sharing
	2.1. Tools to Import/Export Any Kind of Knowledge, Even in User Specified Formal Languages
	2.2. General Purpose Ontologies Merging Top Level Ontologies and Lexical Ones
	2.3. KB Servers That Support Non-Restricting KB Sharing by Web Users
	2.4. KB Servers That Support Networked KBs

	3. Examples of Representations for General Knowledge Sharing
	3.1. Organization of a Small Terminology about Disaster Risk Reduction
	3.2. A General Model for Organizing and Representing Search&Rescue Information
	Box 6. Commented FL representation of object-oriented classes for Search&Rescue.
	3.3. Representations about Automatic Explorations of a Disaster Area
	3.4. Representations about Ways to Create Rovers Adapted to a Terrain

	4. Conclusions
	References

